首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
The current study examined whether opening of the ATP-sensitive K(+) (K(ATP)) channel can induce hydroxyl free radical (OH) generation, as detected by increases in nonenzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) levels in the rat myocardium. When KCl (4-140mM) was administered to rat myocardium through microdialysis probe, the level of 2,3-DHBA increased gradually in a potassium ion concentration ([K(+)](o))-dependent manner. The [K(+)](o) for half-maximal effect of the level of 2,3-DHBA production (ED(50)) was 67.9microM. The maximum attainable concentration of the level of 2,3-DHBA (E(max)) was 0.171microM. Induction of glibenclamide (10microM) decreased OH formation. The half-maximal inhibitory effect (IC(50)) for glibenclamide against the [K(+)](o) (70mM)-evoked increase in 2,3-DHBA was 9.2microM. 5-Hydroxydecanoate (5-HD, 100microM), another K(ATP) channel antagonist, also decreased [K(+)](o)-induced OH formation. The IC(50) for 5-HD against the [K(+)](o) (70mM)-evoked increase in 2,3-DHBA was 107.2microM. The heart was subjected to myocardial ischemia for 15min by occlusion of left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with glibenclamide (10microM) or 5-HD (100microM). These results suggest that opening of cardiac K(ATP) channels by depolarization evokes OH generation.  相似文献   

2.
Action potential duration (APD) shortening due to opening of sarcolemmal ATP-dependent potassium (KATP) channels has been postulated to protect the myocardium against postischemic damage by reducing Ca2+ influx. This hypothesis was assessed, assuming that increased postischemic stunning due to KATP channel inhibition with glibenclamide could be reverted by the addition of the Ca2+ channel blocker diltiazem. Percent wall thickening fraction (% WTh, conscious sheep) and APD (open-chest sheep) were obtained from the following groups: control: 12 min ischemia by anterior descending coronary artery occlusion followed by 2 h reperfusion; glibenclamide: same as control, with glibenclamide (0.4 mg/kg) infused 30 min before ischemia; diltiazem: same as control, with diltiazem (100 g/kg) administered prior to ischemia; glibenclamide+diltiazem: both drugs infused as in glibenclamide and diltiazem groups. APD was reduced in control ischemia. Conversely, KATP-channel blockade by glibenclamide lengthened APD and increased postischemic stunning (p < 0.01 vs. control); glibenclamide+diltiazem did not shorten APD but enhanced functional recovery (p < 0.01 vs. glibenclamide). Ca2+ channel blockade improvement of increased stunning provoked by KATP channel inhibition supports the hypothesis that APD shortening due to opening of KATP channels protects against postischemic stunning by limiting Ca2+ influx.  相似文献   

3.
Thirty-four spermidine (SPD) and spermine (SPM) derivatives with aromatic substituents were synthesized and tested as inhibitors of specific binding of the NMDA channel blocker [3H]MK-801 to membranes prepared from rat hippocampus and cerebral cortex. SPD and SPM derivatives with aromatic substituents at the primary amino groups were the most potent inhibitors (IC50 3.9-4.7 microM). These compounds most likely act directly at the NMDA ion channel, since 30 microM SPM had no pronounced influence on their inhibiting activities. SPD derivatives with aromatic substituents at the secondary amino group were either inactive or highly SPM-sensitive inhibitors (IC50 10-82 microM), depending on the size of the substituent. Our results support the hypothesis that an aromatic interaction site near the center of polyamine derivatives contributes to polyamine inverse agonism.  相似文献   

4.
Several new chemical entities (RP 52891, cromakalim and its derivatives) are potent and specific openers of vascular K+ channels. This mechanism is also shared, at least partially, by drugs such as minoxidil, diazoxide, pinacidil and nicorandil. The opening of plasmalemma K+ channels produces loss of cytosolic K+. This effect results in cellular hyperpolarization and functional vasorelaxation. In normotensive or hypertensive rats, K+ channel activators decrease aortic blood pressure (by producing a directly mediated fall in systemic vascular resistance) and reflexly increase heart rate. The former effect is not modified by specific blockers of classical vascular receptors but it is completely antagonized by the hypoglycemic sulphonylurea, glibenclamide, an established blocker of ATP-regulated K+ channels. K+ channel openers produce selective coronary vasodilatation and afford functional and biochemical protection to the ischemic myocardium. This salutary effect is mediated via cardiac K+ channel modulation and may result from an improved myocardial oxygen balance in the ischemic region. K+ channel openers increase plasma renin activity in animals as well as in man. However, only diazoxide, but not cromakalim or RP 52891, lowers plasma insulin concentration. The dose of glibenclamide entirely blocking the latter effect is over 50-fold smaller than that antagonizing the hypotensive and hyper-reninemic responses to diazoxide. In conclusion, K+ channel activators are potent vasorelaxant and cardioprotective agents possessing an original mechanism of action which is the opening of plasmalemma ATP-regulated K+ channels. Their clinical use as antihypertensive agents may be accompanied by undesirable effects (characteristic of peripheral vasodilators) which are likely to be attenuated or avoided by controlled release formulations. However, inasmuch as low doses of K+ channel openers may be sufficient to produce selective coronary artery dilatation and cardioprotection, these compounds could be of particular value in treating patients with coronary artery disease efficaciously and possibly without adverse cardiovascular effects.  相似文献   

5.
The present study examined whether opening of an ATP-sensitive K(+) (K(ATP)) channel can induce hydroxyl free radical ((*)OH) generation in the rat myocardium. Sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused directly through a microdialysis probe to detect the generation of (*)OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (DHBA). Induction of cromakalim (100 microM), a K(ATP) channel opener, through the microdialysis probe significantly increased the level of 2,3-DHBA. Another K(ATP) channel opener, nicorandil, also increased the level of 2,3-DHBA. When iron(II) was administered to cromakalim-pretreated animals, a marked elevation of DHBA was observed, compared with iron(II) only-treated animals. A positive linear correlation between iron(II) and formation of (*)OH, trapped as DHBA in the dialysate, was shown (r(2) = 0.988). When corresponding experiments were performed with nicorandil-treated animals, a positive linear correlation between iron(II) and DHBA in the dialysate was shown (r(2) = 0.988). However, the presence of glibenclamide (1-50 microM) decreased the cromakalim-induced 2,3-DHBA formation in a concentration-dependent manner (IC(50) = 9.1 microM). 5-Hydroxydecanoate (5-HD; 100 microM), another K(ATP) channel antagonist, also decreased cromakalim-induced (*)OH formation. The IC(50) value for 5-HD against cromakalim-evoked increase in 2,3-DHBA was 107.2 microM. In the presence of glibenclamide (10 microM), the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with glibenclamide (10 microM). When corresponding experiments were performed with 5-HD (100 microM) pretreated animals, the same results were obtained. These results suggest that opening of cardiac K(ATP) channels may cause (*)OH generation.  相似文献   

6.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

7.
The synthesis of a series of methoxy bearing 2,2-dimethyl-2H-1-benzopyrans have been achieved for testing as potassium channel activators. The synthesis involves formation of 6-cyano-8-methoxy-2,2-dimethyl-2H-1-benzopyran from vanillin, epoxidation, then ring opening of the epoxide with nitrogen nucleophiles to produce the new benzopyrans. Biological testing showed a dramatic decrease in activity thus revealing an important site of activity in this class of compounds.  相似文献   

8.
Qneibi MS  Micale N  Grasso S  Niu L 《Biochemistry》2012,51(8):1787-1795
2,3-Benzodiazepine (2,3-BDZ) compounds are a group of AMPA receptor inhibitors and are drug candidates for treating neurological diseases involving excessive AMPA receptor activity. We investigated the mechanism by which GluA2Q(flip) receptor channel opening is inhibited by two 2,3-BDZ derivatives, i.e., 1-(4-aminophenyl)-3,5-dihydro-7,8-ethylenedioxy-4H-2,3-benzodiazepin-4-one (2,3-BDZ-11-2) and its 1-(4-amino-3-chlorophenyl) analogue (2,3-BDZ-11-4). Both compounds have a 7,8-ethylenedioxy moiety instead of the 7,8-methylenedioxy feature present in the structure of GYKI 52466, the prototypic 2,3-BDZ compound. Using a laser-pulse photolysis approach with a time resolution of ~60 μs and a rapid solution flow technique, we characterized the effect of the two compounds on the channel opening process of the homomeric GluA2Q(flip) receptor. We found that both 2,3-BDZ-11-2 and 2,3-BDZ-11-4 are noncompetitive inhibitors with specificity for the closed-channel conformation of the GluA2Q(flip) receptor. However, 2,3-BDZ-11-4 is ~10-fold stronger, defined by its inhibition constant for the closed-channel conformation (i.e., K(I) = 2 μM), than 2,3-BDZ-11-2. From double-inhibitor experiments, we determined that both compounds bind to the same site, but this site is different from two other known, noncompetitive binding sites on the GluA2Q(flip) receptor previously reported. Our results provide both mechanistic clues to improve our understanding of AMPA receptor regulation and a structure-activity relationship for designing more potent 2,3-BDZ compounds with predictable properties for this new noncompetitive site.  相似文献   

9.
A convenient synthesis method for methylenomycin B and its homolog, methylenomycin A, has been developed. Methylenomycin B, 2,3-dimethyl-5-methylene-2-cyclopentenone (3) was synthesized: i) by methylation of Mannich derivative prepared from morpholine and 2,3-dimethyl- 2-cyclopentenone (5) or ii) by treatment of formalin with sodio derivatives of 2,3-dimethyl-5-formyl-2-cyclopentenone (7a) and 2,3-dimethyl-5-ethoxalyl-2-cyclopentenone (7b), both of which were easily prepared from 5 and ethyl formate or ethyl oxalate. 2,3-Dimethyl-2,3-epoxy-5-methylenecyclopentanone (2) was similarly prepared from the epoxide compound of 5 and ethyl oxalate. The bioassay ofmethylenomycin B and its related compounds against bacteria (B. subtilis, S. aureus, Ps. aeruginosa and E. coli) was also conducted. Methylenomycin A (1) and its desepoxy compound (17) were also prepared from 4-carboxy-2,3-dimethyl-2-cyclopentenone (15) in the same procedure as described above.  相似文献   

10.
A series of xanthones and xanthonoxypropanolamines have been synthesized. The activity of compounds on cardiovascular system was evaluated. All the compounds tested exhibited effective hypotensive activity in anesthetized rats. An oxypropanolamine side chain substituted at the C-3 position of the xanthone nucleus significantly enhanced the hypotensive activity. In rat thoracic aorta, all the compounds tested significantly depressed the contractions induced by Ca(2+) (1.9mM) in high K+(80mM) medium and the phasic and tonic contractions caused by norepinephrine (3 microM). In the rat thoracic aorta, the phenylephrine- and high K+ -induced 45Ca(2+) influx were both inhibited by a selective xanthone derivative, 13. In addition to the previously reported result of 13, evaluated as beta adrenoceptor blocker, the depressor and bradycardia effects of 9 are independent of the parasympathetic passway. These results suggest that 13 showed inhibitory effects on the contractile response caused by high K+ and norepinephrine in rat thoracic aorta are mainly due to inhibition of Ca(2+) influx through both voltage-dependent and receptor-operated Ca(2+) channels. The vasodilating properties of 13 is due to its calcium channel and beta adrenergic blocking effects.  相似文献   

11.
The effects of sulfur dioxide (SO2) derivatives (bisulfite and sulfite, 1:3 M/M) on voltage-dependent potassium current in isolated adult rat ventricular myocyte were investigated using the whole cell patch-clamp technique. SO2 derivatives (10 microM) increased transient outward potassium current (I(to)) and inward rectifier potassium current (I(K1)), but did not affect the steady-state outward potassium current (I(ss)). SO2 derivatives significantly shifted the steady-state activation curve of I(to) toward the more negative potential at the V(h) point, but shifted the inactivation curve to more positive potential. SO2 derivatives markedly shifted the curve of time-dependent recovery of I(to) from the steady-state inactivation to the left, and accelerated the recovery of I(to) from inactivation. In addition, SO2 derivatives also significantly change the inactivation time constants of I(to) with increasing fast time constant and decreasing slow time constant. These results indicated a possible correlation between the change of properties of potassium channel and SO2 inhalation toxicity, which might cause cardiac myocyte injury through increasing extracellular potassium via voltage-gated potassium channels.  相似文献   

12.
In this study, some 4-(1,5-diarylimidazol-2-yl)thioacetyl-1-phenyl-2,3-dimethyl-3-pyrazoline-5-one derivatives were prepared by reacting 4-(2-chloroacetyl)-1-phenyl-2,3-dimethyl-3-pyrazoline-5-one and 2-mercapto-1, 5-diarylimidazole derivatives. The antinociceptive and anticancer activities of the compounds obtained were investigated. It was observed that some of the compounds, 2a, 2d, 2g, and 2j, showed remarkable antinociceptive activity, and one of the compounds, 2i, showed weak anticancer activity.  相似文献   

13.
Ritz M  Micale N  Grasso S  Niu L 《Biochemistry》2008,47(3):1061-1069
2,3-Benzodiazepine derivatives are drug candidates synthesized for potential treatment of various neurodegenerative diseases involving the excessive activity of AMPA receptors. Here we describe a rapid kinetic investigation of the mechanism of inhibition of the GluR2Qflip AMPA receptor channel opening by two 2,3-benzodiazepine derivatives that are structurally similar (BDZ-2 and BDZ-3). Using a laser-pulse photolysis technique with a time resolution of approximately 60 mus, we measured the effects of these inhibitors on both the channel opening rate and the whole-cell current amplitude. We found that both compounds preferably inhibit the open-channel state, although BDZ-2 is a more potent inhibitor in that it inhibits the open-channel state approximately 5-fold stronger than BDZ-3 does. Both compounds bind to the same noncompetitive site. Binding of an inhibitor to the receptor involves the formation of a loose, partially conducting channel intermediate, which rapidly isomerizes to a tighter complex. The isomerization reaction is identified as the main step at which the receptor distinguishes the structural difference between the two compounds. These results suggest that addition of a bulky group at the N-3 position on the diazepine ring, as in BDZ-3, does not alter the mechanism of action, or the site of binding, but does lower the inhibitory potency, possibly due to an unfavorable interaction of a bulky group at the N-3 position with the receptor site. The new mechanistic revelation about the structure-reactivity relationship is useful in designing conformation-specific, more potent noncompetitive inhibitors for the GluR2 AMPA receptor.  相似文献   

14.
In the present study, we describe the existence of mitochondrial ATP-dependent K+ channel (mitoKATP) in two different insect tissues, fat body and muscle of cockroach Gromphadorhina coquereliana. We found that pharmacological substances known to modulate potassium channel activity influenced mitochondrial resting respiration. In isolated mitochondria oxygen consumption increased by about 13% in the presence of potassium channel openers (KCOs) such as diazoxide and pinacidil. The opening of mitoKATP was reversed by glibenclamide (potassium channel blocker) and 1 mM ATP. Immunological studies with antibodies raised against the Kir6.1 and SUR1 subunits of the mammalian ATP-sensitive potassium channel, indicated the existence of mitoKATP in insect mitochondria. MitoKATP activation by KCOs resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of mitochondrial ATP-sensitive potassium channel in insects.  相似文献   

15.
B-type natriuretic peptide (BNP) has been reported to be released from the myocardium during ischemia. We hypothesized that BNP mediates cardioprotection during ischemia-reperfusion and examined whether exogenous BNP limits myocardial infarction and the potential role of ATP-sensitive potassium (K(ATP)) channel opening. Langendorff-perfused rat hearts underwent 35 min of left coronary artery occlusion and 120 min of reperfusion. The control infarct-to-risk ratio was 44.8 +/- 4.4% (means +/- SE). BNP perfused 10 min before ischemia limited infarct size in a concentration-dependent manner, with maximal protection observed at 10(-8) M (infarct-to-risk ratio: 20.1 +/- 5.2%, P < 0.01 vs. control), associated with a 2.5-fold elevation of myocardial cGMP above the control value. To examine the role of K(ATP) channel opening, glibenclamide (10(-6) M), 5-hydroxydecanoate (5-HD; 10(-4) M), or HMR-1098 (10(-5) M) was coperfused with BNP (10(-8) M). Protection afforded by BNP was abolished by glibenclamide or 5-HD but not by HMR-1098, suggesting the involvement of putative mitochondrial but not sarcolemmal K(ATP) channel opening. We conclude that natriuretic peptide/cGMP/K(ATP) channel signaling may constitute an important injury-limiting mechanism in myocardium.  相似文献   

16.
Based on the structure of ZK91296 (4d), a high affinity partial agonist of the central benzodiazepine (omega) receptor, a series of pyrrolo[2,3-c]pyridine-5-carboxylate derivatives having mainly aralkyl and aralkyloxy substituents at C-3 was synthesized. The in vitro binding affinities of these compounds for three subclasses of the omega receptor (omega1, omega2, omega5) were determined using rat brain tissue. Practically all of these compounds (except the diethyl ester derivative 22c) showed an approximately twofold selectivity for omega1 (IC50's in the 200-500 nM range) compared to omega2 receptors and practically no affinity for omega5 receptors. Compound 22c showed the highest affinity of all the compounds synthesized (IC50 = 70 nM for omega1 receptors) as well as a fivefold selectivity for omega1 versus omega2 receptors but also displayed significant binding to omega5 receptors (IC50 = 250 nM). The absence of appreciable binding of 4-methyl and 4-methoxymethyl derivatives to omega receptors, in contrast to beta-carbolines having these similarly located substituents, suggests that the pyrrolo[2,3-c]pyridine-5-carboxylates may be considered an entirely novel class of selective omega receptor ligands.  相似文献   

17.
The mechanism of adenosine-induced vasodilation in rat diaphragm microcirculation was investigated using laser Doppler flowmetry. Adenosine (10(-5), 3.2 x 10(-5), and 10(-4) M), the nonselective adenosine agonist 5'-N-ethylcarboxamido-adenosine (NECA) (10(-8)-10(-7) M), the specific A(2A) agonist 2-p-(2-carboxyethyl)phenyl-amino-5'-N-ethyl carboxamidoadenosine (CGS-21680) (10(-8)-10(-7) M), and the adenosine agonist with higher A(1)-receptor affinity, R-N(6)-phenylisopropyladenosine (R-PIA) (10(-7), 3.2 x 10(-7), and 10(-6) M) elicited a similar degree of incremental increase of microcirculatory flow in a dose-dependent manner. The ATP-dependent potassium (K(ATP)) channel blocker glibenclamide (3.2 x 10(-6) M) significantly attenuated the vasodilation effects of these agonists. Adenosine-induced vasodilation could be significantly attenuated by the nonselective adenosine antagonist 8-(p-sulfophenyl)-theophylline (3 x 10(-5) M) or the selective A(2A) antagonist 4-(2-[7-amino-2-(2-furyl)[1,2, 4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl) phenol (ZM-241385, 10(-6) M), but not by the selective A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (5 x 10(-8) M). Adenylate cyclase inhibitor N-(cis-2-phenyl-cyclopentyl) azacyclotridecan-2-imine-hydrochloride (MDL-12330A, 10(-5)M) effectively suppressed the vasodilator response of adenosine and forskolin. These results suggest that adenosine-induced vasodilation in rat diaphragm microcirculation is mediated through the stimulation of A(2A) receptors, which are coupled to adenylate cyclase activation and opening of the K(ATP) channel.  相似文献   

18.
Pharmacological opening of mitochondrial cardiac ATP-sensitive potassium (K(ATP)) channels has the chance to be a promising but still controversial cardioprotective mechanism. Physiological roles of mitochondrial K(ATP) channels in the myocardium remain unclear. We studied the effects of diazoxide, a specific opener of these channels, on the function of rat mitochondria in situ in saponin-permeabilized fibers using an ionic medium that mimics the cytosol. In the presence of NADH-producing substrates (malate + glutamate), neither 100 microm diazoxide nor 100 microm glibenclamide (a K(ATP) channel blocker) changed the mitochondrial respiration in the absence or presence of ADP. Because the K(ATP) channel function could be modified by changes in adenine nucleotide concentrations near the mitochondria, we studied the effects of diazoxide and glibenclamide on the functional activity of mitochondrial kinases. Both diazoxide and glibenclamide did not change the in situ ADP sensitivity in the presence or absence of creatine (apparent K(m) values for ADP were, respectively, 59 +/- 9 and 379 +/- 45 microm). Similarly, stimulation of the mitochondrial respiration with AMP in the presence of ATP due to adenylate kinase activity was not affected by the modulators of K(ATP) channels. However, when succinate was used as substrate, diazoxide significantly inhibited basal respiration by 22% and maximal respiration by 24%. Thus, at a cardioprotective dose, the main functional effect of diazoxide depends on respiratory substrates and seems not to be related to K(ATP) channel activity.  相似文献   

19.
Vasodilative effect of perillaldehyde on isolated rat aorta   总被引:2,自引:0,他引:2  
The vasodilative effect of perillaldehyde, one of the major oil components in Perilla frutescens BRITTON, was studied using isolated rat aorta. Perillaldehyde at final concentrations of 0.01 to 1 mM showed dose-dependent relaxation of the aorta contracted by treatment with prostaglandin F2alpha or norepinephrine. Neither the presence of NG-nitro-L-arginine methyl ester nor removal of the aortic endothelium affected the vasodilatation, suggesting that perillaldehyde exerts a direct effect on vascular smooth muscle cells. The vasodilative effect of perillaldehyde was not inhibited by pretreatment with a beta-adrenergic receptor blocker (propranolol), an inhibitor of phosphodiesterase (theophylline), a delayed rectifier K+ channel blocker (tetraethylammonium chloride), or an ATP-sensitive K+ channel blocker (glibenclamide). However, perillaldehyde showed contrasting effects on vasodilatation of the aorta contracted by an influx of extracellular Ca2+ - perillaldehyde caused little vasodilatation on the aorta contracted by the Ca2+ ionophore A23187, while it inhibited the vasoconstriction induced by treatment with high-concentration K+, which dominantly opened the voltage-dependent Ca2+ channel. These results suggest that the vasodilative effect of perillaldehyde is derived from blocking the Ca2+ channels.  相似文献   

20.
Amino-substituted pyrido[2,3-d]pyrimidinediones have previously been found to bind to adenosine A1 and A2A receptors in micromolar concentrations. The present study was aimed at studying the structure-activity relationships of this class of compounds in more detail. Most of the investigated compounds were provided with polar substituents, such as ethoxycarbonyl groups and basic amino functions, in order to improve their water-solubility. The compounds were synthesized starting from 6-amino-1,3-dimethyluracil via different reaction sequences involving (cyano)acetylation, Vilsmeier formylation, or reaction with diethyl ethoxymethylenemalonate (EMME). The most potent and selective compound of the present series was 6-carbethoxy-1,2,3,4-tetrahydro-1,3-dimethyl-5-(2-naphthylmethyl)aminopyrido[2,3-d]pyrimidine-2,4-dione (11c) with a Ki value of 5 nM at rat and 25 nM at human A1 receptors. The compound was more than 60-fold selective versus A3 and more than 300-fold selective versus A2A receptors. It showed an over 300-fold improvement with respect to the lead compound. In GTPgammaS binding studies at membranes of Chinese hamster ovary cells recombinantly expressing the human adenosine A1 receptor, 11c behaved as an antagonist with inverse agonistic activity. A regioisomer of 11c, 6-carbethoxy-1,2,3,4-tetrahydro-1,3-dimethyl-7-(2- naphthylmethyl)aminopyrido[2,3-d]pyrimidine-2,4-dione (7a) in which the 2-naphthylmethylamino substituent at position 5 of 11c was moved to the 7-position, was a relatively potent (Ki=226 nM) and selective (>20-fold) A3 ligand. In the series of compounds lacking an electron-withdrawing ethoxycarbonyl or cyano substituent in the 6-position, compounds with high affinity for adenosine A2A receptors were identified, such as 1,2,3,4-tetrahydro-1,3-dimethyl-5-(1-naphthyl)aminopyrido[2,3-d]pyrimidine-2,4-dione 16b (Ki human A2A=81.3 nM, Ki human A1=153 nM, and Ki human A3>10,000 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号