首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differentiation of murine erythroleukemic cells induced by hexamethylene bisacetamide is shown to be differently affected by two inhibitors of polyamine biosynthesis. Methyl glyoxal bis(guanyl hydrazone) (inhibitor or S-adenosyl methionine decarboxylase) inhibited this differentiation process. By using a novel experiment protocol the inhibitory effect of this drug on the induced differentiation was dissociated from pleiotropic effects on cell growth. Methyl glyoxal bis(guanyl hydrazone) only inhibited the induced differentiation if present during the first 6 h of culture of the cells with the inducer. No effect on the induced differentiation was observed if the drug was added to the culture medium 6 h after the inducer. alpha-Difluoro methylornithine (inhibitor of ornithine decarboxylase) stimulated the differentiation of these cells. Polyamine analysis demonstrated that alpha-difluoro methylornithine increased the rapidity and the amplitude of the changes in intracellular polyamines associated with this induced differentiation. The presence of methyl glyoxal bis(guanyl hydrazone) during the first 3 h with the inducer was sufficient to produce opposing changes in the intracellular polyamines. These results suggest that changes in either intracellular polyamines or the activities of polyamine biosynthetic enzymes play a regulatory role in the differentiation process induced in murine erythroleukemic cells by hexamethylene bisacetamide.  相似文献   

2.
These studies provide further support for the thesis that the activation of protein kinase C is likely involved in the prolactin (PRL) stimulation of mitogenesis in the Nb2 node lymphoma cell line. The diterpene mezerein is shown to potentiate the mitogenic effect of PRL at a hormone concentration which elicits a less than maximum response. A similar response was observed with two diglycerides, diolein and dicaprin. Neither mezerein nor the diglycerides affected the magnitude of response to a maximum stimulatory concentration of PRL.  相似文献   

3.
4.
Prolactin (PRL) stimulates lactogenesis in mammary cells and mitogenesis in a variety of cell types including Nb(2) cells. Studies indicate that a different composite of signaling pathways is involved in the PRL stimulation of mitogenesis as compared to lactogenesis. In the present studies, PRL is shown to stimulate the tyrosyl phosphorylation of all three isoforms of Shc proteins in Nb(2) cells (mitogenesis), but not in the mammary gland. Maximal phosphorylation of the Shc proteins is expressed between 10 and 15 min after a 50-ng/ml PRL treatment. In addition, there is an increased association between the Grb2 protein and Shc proteins upon PRL stimulation. However, no increased association between JAK2 and Shc proteins was observed in either the Nb(2) cells or mammary tissues.  相似文献   

5.
Effect of inhibitors of polyamine (PA) biosynthesis, alpha-difluoromethylornithine (DFMO), methylglyoxal bis (guanylhydrazone)--MGBG and bis (cyclohexylammonium) sulphate (BCHA) on mycelial growth of three clinically important fungi-Trichophyton mentagrophytes, Microsporum gypseum and Aspergillus flavus was examined in vitro. All inhibitors at concentrations 1 to 50 mM produced greater inhibition of mycelial growth in all fungi tested in a dose-dependent manner. MGBG was the most effective inhibitor, and T. mentagrophytes was the most sensitive fungus to all inhibitors followed by M. gypseum and A. flavus. The results suggested that control of fungal diseases in animals and human beings with specific inhibitors of PA biosynthesis is possible.  相似文献   

6.
This review considers the role of antizyme, of amino acids and of protein synthesis in the regulation of polyamine biosynthesis.The ornithine decarboxylase of eukaryotic ceils and ofEscherichia coli coli can be non-competitively inhibited by proteins, termed antizymes, which are induced by di-and poly- amines. Some antizymes have been purified to homogeneity and have been shown to be structurally unique to the cell of origin. Yet, the E. c o l i antizyme and the rat liver antizyme cross react and inhibit each other's biosynthetic decarboxylases. These results indicate that aspects of the control of polyamine biosynthesis have been highly conserved throughout evolution.Evidence for the physiological role of the antizyme in mammalian cells rests upon its identification in normal uninduced cells, upon the inverse relationship that exists between antizyme and ornithine decarboxylase as well as upon the existence of the complex of ornithine decarboxylase and antizyme in vivo. Furthermore, the antizyme has been shown to be highly specific; its Keq for ornithine decarboxylase is 1.4 x 1011 M-1. In addition, mammalian ceils contain an anti-antizyme, a protein that specifically binds to the antizyme of an ornithine decarboxylase-antizyme complex and liberates free ornithine decarboxylase from the complex. In B. coli , in which polyamine biosynthesis is mediated both by ornithine decarboxylase and by arginine decarboxylase, three proteins (one acidic and two basic) have been purified, each of which inhibits both these enzymes. They do not inhibit the biodegradative ornithine and arginine decarboxylases nor lysine decarboxylase. The two basic inhibitors have been shown to correspond to the ribosomal proteins S20/L26 and L34, respectively. The relationship of the acidic antizyme to other known B. coli proteins remains to be determined.  相似文献   

7.
An endonuclease, AsuI, was isolated from extracts of Anabaena subcylindrica on the basis of gel-electrophoretic analysis of digests of bacteriophage-lambda DNA with the paritally purified extracts. The enzyme requires Mg2+, but no other cofactors. Endonuclease AsuI recognizes the interrupted tetranucleotide sequence: (Formula: see tex), and breaks the phosphodiester bonds indicated by the arrows to leave single-stranded trinucleotide projections at the 5'-termini of the DNA fragments.  相似文献   

8.
Prolactin (PRL)-stimulated ornithine decarboxylase (ODC) activity and subsequent proliferation are inhibited by the cyclopeptides cyclosporine (CsA) and didemnin B (DB) in Nb 2 node lymphoma cells. Similar concentrations of these agents also inhibit 125I-PRL binding, suggesting that their inhibitory effects on these PRL-dependent physiologic responses are mediated at least in part at the level of PRL receptor interactions. The phorbol ester TPA stimulated ODC activity and [3H]thymidine incorporation to 54% and 31% that of a near-optimal mitogenic concentration of PRL (10 ng/ml), suggesting that mitogenesis in these cells is coupled to some degree to the activation of protein kinase C (PKC). The calcium ionophore A23187 increased ODC activity only slightly and actually decreased [3H]thymidine incorporation to a value below the "cells only" controls. The addition of TPA plus A23187 did not further enhance the effects of TPA to elevate ODC activity and [3H]thymidine incorporation. However, A23187 significantly elevated PRL-stimulated ODC activity with a subsequent inhibition of [3H]thymidine incorporation, suggesting a block of entry into S phase. Both cyclopeptides decreased the elevation of ODC activity in G1 phase of cell cycle in response to PRL, suggestive of a site of action for these agents in early G1, a conclusion compatible with their ability to inhibit PRL binding to these cells. Addition of CsA or DB 2 hr after PRL had no effect on PRL-stimulated ODC activity detectable at 6 hr, but addition of either as late as 6 hr still affected the extent of mitogenesis. This is in line with the requirement for PRL to be present in the culture medium for a minimum of 3 to 6 hr to invoke a maximal effect on mitogenesis. Addition of either cyclopeptide after the cells were in S phase had no effect on the extent of [3H]thymidine incorporation. An inhibitor of the cyclooxygenase pathway (indomethacin) enhanced both PRL-stimulated ODC activity and proliferation, whereas inhibition of the lipoxygenase pathway by NDGA attenuated only proliferation, suggesting that in Nb 2 cells, products of the lipoxygenase pathway may contribute to the mechanism of PRL-stimulated mitogenesis. Because Nb 2 lymphoma cells were derived from estrogenized rats, estrogen was tested as a mitogen. By itself it was not mitogenic, but in conjunction with PRL, estradiol-17 beta elevated the ODC response and inhibited proliferation. Inhibitors of PKC known to have minimal effects on RNA synthesis, quercetin and gossypol, totally inhibited both the elevations of ODC activity and [3H]thymidine incorporation in response to PRL in Nb 2 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In Nb2 node rat lymphoma cells, the effects of prolactin (PRL) on the rates of incorporation of several precursors into neutral lipids, phospholipids and proteins were determined. The onset of the PRL stimulation of radiolabeled-precursor incorporation into lipids occurred between 1 and 4 hours after PRL addition to Nb2 cells; precursors employed included [14C]-acetate, [3H]-glycerol, [32P]O4, [3H]-choline, [3H]-ethanolamine, [3H]-serine and [3H]-myoinositol. No effects were observed during the initial 60 min of culture with PRL. The effects on precursor incorporation that occur after 1 hr of PRL exposure are likely related to the stimulation of cell growth by PRL. In cells that were prelabeled with the radiolabeled precursors and subsequently incubated with PRL, PRL had no effect on the metabolism of the radiolabeled phospholipids or the accumulation of phospholipid products until several hours after hormone addition. We would conclude from these studies that the initial (60 min) effect of PRL on Nb2 node lymphoma cells does not likely use a signal transduction mechanism that involves products derived from the cellular phospholipids.  相似文献   

10.
A previous study has shown that the activity of ornithine decarboxylase in cultured Nb2 node rat lymphoma cells falls to undetectable levels when cells become quiescent following incubation in lactogen (prolactin)-deficient medium. In the present study, it was found that addition of extracts of the lactogen-deprived, quiescent cells to extracts of log-phase cells markedly reduced the ornithine decarboxylase activity of the latter, the inhibitory activity being proportional to the amount of quiescent cell extract added. Evidence is presented that the ornithine decarboxylase-inhibitory activity in the quiescent cell extracts is due to an antizyme-like, polypeptide factor with an Mr of approx. 28,000. The activity of the inhibitor appears to be directed rather specifically against ornithine decarboxylase, since the activities of S-adenosylmethionine decarboxylase, thymidine kinase and uridine kinase were not affected. The Nb2 cell ornithine decarboxylase inhibitor may have an important role in modulating the cellular levels of ornithine decarboxylase as they change in response to the withdrawal and restoration of extracellular mitogenic lactogens.  相似文献   

11.
The objective of the present investigation was to define a more precise role for intracellular polyamine biosynthesis with respect to specific inducible events which regulate lymphocyte mitogenesis. In this regard, we have examined the effect of polyamine depletion on interleukin 2 (IL-2) production, receptor expression, and responsiveness in Con A stimulated mononuclear leukocytes (MNL). Polyamine depletion was achieved utilizing the specific irreversible inhibitor of ornithine decarboxylase (ODC), DL-alpha-difluoromethylornithine (DFMO). Polyamine depletion of MNL augmented detectable levels of Con A-induced IL-2 activity. In contrast, the ability of polyamine depleted MNL to respond to saturating levels of IL-2 (100 U/ml) following 72 or 96 hr of Con A stimulation was reduced 100 and 81%, respectively. Nonetheless, polyamine depletion did not impair the induction of IL-2 receptor expression. High-affinity IL-2 receptor density in the polyamine depleted population was greater than control cells late in culture (96 hr). The expression of high-affinity IL-2 receptors did not correlate with an ability to respond to IL-2 in the polyamine depleted population. The results of this study demonstrate for the first time that intracellular polyamine biosynthesis is required for IL-2 responsiveness during a primary mitogenic lymphocyte response.  相似文献   

12.
We isolated and characterized a new gene related to the control of cell division regulation in Escherichia coli . At 30°C, the dnaAcos mutant causes over-replication of the chromosome, and colony formation is inhibited. We found that, at this temperature, the dnaAcos cells form filaments; therefore, septum formation is inhibited. This inhibition was independent of SfiA, an inhibitor of the septum-forming protein, FtsZ. To identify factors involved in this pathway of inhibition, we isolated seven multicopy suppressors for the cold-sensitive phenotype of the dnaAcos mutant. One of these proved to be a previously unknown gene, which we named cedA . This gene encoded a 12 kDa protein and resided at 38.9 min on the E. coli genome map. A multicopy supply of the cedA gene to the dnaAcos cells did not repress over-replication of the chromosome but did stimulate cell division of the host, the result being growth of cells with an abnormally elevated chromosomal copy number. Therefore, the expression level of the cedA gene seems to be important for inhibiting cell division of the dnaAcos mutant at 30°C. We propose that over-replication of the chromosome activates a pathway for inhibiting cell division and that the cedA gene modulates this division control. In the dnaA + background, cedA also seems to affect cell division.  相似文献   

13.
14.
This investigation was designed to determine whether cell death plays a role in the antiproliferative action exerted by polyamine synthesis inhibitors. To estimate the rate of tumor cell death, we measured the loss of 125I from mice harboring Ehrlich ascites tumor cells in which DNA was labeled with 5-125I-iodo-2'-deoxyuridine. DL-alpha-difluoromethylornithine (0.85 mumoles/g body weight/6 h), and enzyme-activated irreversible inhibitor of ornithine decarboxylase, and methylglyoxal-bis(guanylhydrazone) (45 nmoles/g body weight/6 h), an inhibitor of S-adenosylmethionine decarboxylase, were both found to increase the rate of 125I excretion. Our data suggest that these polyamine synthesis inhibitors provoke an increase in the rate of tumor cell death beyond that normally occurring during growth, methylglyoxal-bis(guanylhydrazone) being considerably more potent than DL-alpha-difluoromethylornithine. These in vivo data were corroborated by a study where the host-mediated responses did not have to be considered. Thus, Ehrlich ascites tumor cells were adapted for suspension growth in culture and treated with methylglyoxal-bis(guanylhydrazone) or DL-alpha-difluoromethylornithine. The growth kinetics and the colony forming efficiency of the drug-treated cells clearly show that polyamine synthesis inhibitors not only slow the growth rate but also cause an increase in tumor cell death.  相似文献   

15.
Four methionine analog inhibitors of methionine adenosyltransferase, the enzyme which catalyzes S-adenosylmethionine biosynthesis, were tested in cultured L1210 cells for their effects on cell growth, leucine incorporation, S-adenosylmethionine (AdoMet) formation and polyamine biosynthesis. The IC50 values were as follows: selenomethionine, 0.13 mM; L-2-amino-4-methoxy-cis-but-3-enoic acid (L-cis-AMB), 0.4 mM; cycloleucine, 5 mM and 2-aminobicyclo[2.1.1]hexane-2-carboxylic acid, 5 mM. At IC50 levels, the analogs significantly reduced AdoMet pools by approximately 50% while not similarly affecting leucine incorporation or polyamine biosynthesis. In combination with inhibitors of polyamine biosynthesis, growth inhibition was greatly increased with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase, but only slightly increased with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase. Overall, the data indicate that the methionine analogs, and particularly L-cis-AMB, seem to inhibit cell growth by interference with AdoMet biosynthesis. Since polyamine biosynthesis is not affected, the antiproliferative effect may be mediated through perturbations of certain transmethylation reactions.  相似文献   

16.
17.
18.
19.
The relationships between cholesterogenesis and cell division were studied by using two inhibitors of hydroxymethylglutaryl-CoA reductase activity — 25-hydroxycholesterol and compactin. The effects of both compounds on DNA synthesis were compared in synchronized rat fibroblasts cultured in a cholesterol-containing medium. Compactin did not inhibit DNA synthesis, except after a long time of contact and at high and almost cytotoxic concentrations. 25-Hydroxycholesterol inhibited DNA synthesis (without cytotoxic effects) after only 9–16 h of contact, depending on the phase of the cell cycle at which this compound was added to the culture medium. Sensitivity of cells to 25-hydroxycholesterol was maximal at the end of the S phase/beginning of the G2M phase. The rapid effect of 25-hydroxycholesterol on DNA synthesis appears to be separate from the inhibitory effect on sterol or non-sterol mevalonate-derived compound synthesis. Indeed, under our experimental conditions, the suppression of cholesterol biosynthesis is compensated by the presence of cholesterol in the culture medium, as demonstrated by the lack of effect of compactin on DNA synthesis; moreover, addition of mevalonolactone to the culture medium did not reverse the effect of 25-hydroxycholesterol. 25-Hydroxycholesterol could inhibit DNA synthesis by a direct action on the nucleus, after transfer by the intermediary of a specific hydroxysterol-binding protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号