首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T F Busby  K C Ingham 《Biochemistry》1990,29(19):4613-4618
The assembly of C1, the first component of human complement, involves interactions between various domains of each of its three subcomponents, C1q, C1r, and C1s. The isolation, assignment of function, and structural characterization of the individual domains of C1r and C1s are critical for a thorough understanding of this complex assembly. The present study describes a 27-kDa plasmin-generated fragment derived from the NH2-terminal half of the heavy A chain of C1s-, the activated form of C1s. This fragment, C1s-alpha, was shown in the presence of Ca2+ to mimic the ability of whole C1s- to self-associate, bind to C1r-, and facilitate the binding of C1r to C1q. These results directly prove that the Ca2(+)-binding sites of C1s as well as all of the determinants necessary for binding of C1s- to C1r- and C1q are located in the NH2-terminal 27-kDa alpha region of the A chain.  相似文献   

2.
The structural features and evolutionary interrelationships of the intracellular Ca2+-dependent cysteine enzymes calpains, proteases of the family C2 (EC 3.4.22.17), are considered. A variety of identified sequences of calpains and calpain-like polypeptides found in organisms of different taxons, from the simplest to mammals, are described. Calpains of the major evolutionary groups, typical and atypical, are classified by the analysis of their phylogenetic tree and are differentiated due to the presence of the calmodulin-like Ca2+-binding domain. It is shown that, along with enzymes having "advanced" characteristics (heterodimeric structure, presence of tissue-specific isoforms and splice variants, regulation by the endogenous inhibitor calpastatin, and others), higher organisms contain homologues of calpains of lower eukaryotes. A high degree of homology of the catalytic domain of calpains and the variable structure of other functional domains indicate that calpains are implicated in various physiological processes with the retention of their regulatory role.  相似文献   

3.
Integrin receptor alpha(2)beta(1) requires micromolar Ca(2+) to bind to collagen and to the peptide GPC(GPP)(5)GFOGER(GPP)(5)GPC (denoted GFOGER-GPP, where O represents hydroxyproline), which contains the minimum recognition sequence for the collagen-binding alpha(2) I-domain (Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W., and Barnes, M. J. (2000) J. Biol. Chem. 275, 35-40). Platelet adhesion to these ligands is completely dependent on alpha(2)beta(1) in the presence of 2 mm Mg(2+). However, we show here that this interaction was abolished in the presence of 25 microm EGTA. Adhesion of Glanzmann's thrombasthenic platelets, which lack the fibrinogen receptor alpha(IIb)beta(3), was also inhibited by micromolar EGTA. Mg(2+)-dependent adhesion of platelets was restored by the addition of 10 microm Ca(2+), but millimolar Ca(2+) was inhibitory. Binding of isolated alpha(2)beta(1) to GFOGER-GPP was 70% inhibited by 50 microm EGTA but, as with intact platelets, was fully restored by the addition of micromolar Ca(2+). 2 mm Ca(2+) did not inhibit binding of isolated alpha(2)beta(1) to collagen or to GFOGER-GPP. Binding of recombinant alpha(2) I-domain was not inhibited by EGTA, nor did millimolar Ca(2+) inhibit binding. Our data suggest that high affinity Ca(2+) binding to alpha(2)beta(1), outside the I-domain, is essential for adhesion to collagen. This is the first demonstration of a Ca(2+) requirement in alpha(2)beta(1) function.  相似文献   

4.
The Ca2+-dependent interaction between complement serine proteases C1r and C1s is mediated by their alpha regions, encompassing the major part of their N-terminal CUB-EGF-CUB (where EGF is epidermal growth factor) module array. In order to define the boundaries of the C1r domain(s) responsible for Ca2+ binding and Ca2+-dependent interaction with C1s and to assess the contribution of individual modules to these functions, the CUB, EGF, and CUB-EGF fragments were expressed in eucaryotic systems or synthesized chemically. Gel filtration studies, as well as measurements of intrinsic Tyr fluorescence, provided evidence that the CUB-EGF pair adopts a more compact conformation in the presence of Ca2+. Ca2+-dependent interaction of intact C1r with C1s was studied using surface plasmon resonance spectroscopy, yielding KD values of 10.9-29.7 nM. The C1r CUB-EGF pair bound immobilized C1s with a higher KD (1.5-1.8 microM), which decreased to 31.4 nM when CUB-EGF was used as the immobilized ligand and C1s was free. Half-maximal binding was obtained at comparable Ca2+ concentrations ranging from 5 microM with intact C1r to 10-16 microM for C1ralpha and CUB-EGF. The isolated CUB and EGF fragments or a CUB + EGF mixture did not bind C1s. These data demonstrate that the C1r CUB-EGF module pair (residues 1-175) is the minimal segment required for high affinity Ca2+ binding and Ca2+-dependent interaction with C1s and indicate that Ca2+ binding induces a more compact folding of the CUB-EGF pair.  相似文献   

5.
Calcium sensitive actin severing protein, adseverin, with Mr 74,000, was cleaved into two fragments of Mr 42,000 and Mr 39,000 by V8 protease and trypsin, and both fragments were purified by high performance (pressure) liquid chromatography ion-exchange column chromatography. To understand how adseverin can sever actin filaments, we identified the actin-binding domains. The NH2 termini of native adseverin and the Mr 42,000 fragment were confirmed to be blocked by amino acid sequencing. Twelve amino acids of the Mr 39,000 fragment were sequenced from the NH2 terminus; the sequence of this part had a homology to the hinge region between segments 3 and 4 of gelsolin and villin. Thus, the Mr 42,000 fragment is the NH2-terminal half (N42), and the Mr 39,000 fragment is the COOH-terminal half (C39). Each fragment was examined for actin-severing, -nucleating, -capping, and phospholipid binding activities with and without calcium. N42 contained a calcium-dependent actin-severing activity regulated by phospholipid. C39 bound to G-actin in a calcium-dependent manner, but had no severing activity. The sequence homology and similar functional domain structure suggest a common structural basis for the calcium- and phospholipid-regulated actin-severing properties shared by adseverin, gelsolin, and villin.  相似文献   

6.
Using a sonicated dispersion of radiolabeled 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine as substrate, we found that phospholipase A2 activity of human platelets was enhanced 2.4-fold by albumin (1 mg/ml). The enzyme was recovered predominantly in the cytosolic fraction of platelets with less than a third of its activity being associated with the membrane fraction. In the presence of 24 mM n-octyl-beta-D-glucopyranoside (octylglucoside) phospholipase A2 was effectively (more than 90%) extracted from platelet lysates without solubilization of platelet membranes. Ion exchange chromatography of the soluble enzyme yielded a phospholipase A2 of unchanged total activity and great stability. This phospholipase A2 was active only in the presence of divalent cations (Ca2+ greater than Sr2+ greater than Mg2+ = 0), required albumin for optimal activity and exhibited exclusive positional specificity for the acyl ester bond at the 2-position of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine. Indomethacin (500 microM), mepacrine (500 microM) and N-ethylmaleimide (4 mM) inhibited the phospholipase A2 by 69, 62 and 19%, respectively. The results are discussed in the light of previous findings on human platelet phospholipase A2.  相似文献   

7.
Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously.  相似文献   

8.
[3H]Phorbol dibutyrate [( 3H]PDB) rapidly and reversibly binds to human polymorphonuclear neutrophils (PMN). Ca2+/diacylglycerol/phospholipid-dependent protein kinase C appeared to be the receptor for this binding because: a diacylglycerol, dioctanoylglycerol, competed with [3H]PDB for PMN binding sites; a blocker of protein kinase C-phospholipid interactions, sphinganine, inhibited PMN binding of [3H]PDB; and changes in cytosolic Ca2+ apparently regulated PMN binding of the label. Relevant to the last point, disrupted PMN contained 9 X 10(5) phorbol diester receptors/cell, whereas intact PMN had only 1.6 X 10(5) such receptors that were accessed by the ligand. This number fell to 1.0 X 10(5) in Ca2(+)-depleted PMN and rose to 2.5 X 10(5) in cells stimulated with the Ca2+ ionophore, ionomycin. This ionomycin effect lasted for greater than 16 min, correlated temporally with changes in cytosolic Ca2+, did not occur in Ca2(+)-depleted PMN, and was blocked by sphinganine. A second ionophore, A23187, likewise induced Ca2(+)-dependent rises in [3H]PDB binding. These results fit the standard model, wherein rises in cytosolic Ca2+ cause protein kinase C to translocate from cytosol to plasmalemma and thereby become more available to [3H]PDB. In contrast, two humoral agonists, N-formyl-Met-Leu-Phe (fMLP) and leukotriene (LT)B4, had actions that did not fit this model. They stimulated PMN to increase the availability of PDB binding sites by a sphinganine-sensitive mechanism, but their actions differed from those of ionophores. They induced biphasic (t = 15 and 60 s) increases in [3H]PDB binding while eliciting monophasic (t = 15 s), short-lived (t less than 1 min) rises in cytosolic Ca2+. In Ca2(+)-depleted PMN, moreover, fMLP and LTB4 stimulated slow (t greater than or equal to 30 s), monophasic, prominent rises in [3H]PDB binding and binding site number without appreciably altering cytosolic Ca2+. We suggest, therefore, that fMLP and LTB4 translocate protein kinase C using two sequential mechanisms. The first involves Ca2+ transients and thus produces abrupt (t = 15 s), rapidly reversing responses. The second mechanism uses an unrelated signal to effect a more slowly evolving (t = 60 s) movement of protein kinase C to plasmalemma. Hence, the standard model does not explain all instances of protein kinase C translocation, and a cytosolic Ca2(+)-independent signal contributes to the regulation of protein kinase C as well as those responses elicited by the effector enzyme.  相似文献   

9.
The alpha 1 subunit of cardiac Ca2+ channel, expressed alone or coexpressed with the corresponding beta subunit in Xenopus laevis oocytes, elicits rapidly inactivating Ca2+ currents. The inactivation has the following properties: 1) It is practically absent in external Ba2+; 2) it increases with Ca2+ current amplitudes; 3) it is faster at more negative potentials for comparable Ca2+ current amplitudes; 4) it is independent of channel density; and 5) it does not require the beta subunit. These findings indicate that the Ca2+ binding site responsible for inactivation is encoded in the alpha 1 subunit and suggest that it is located near the inner channel mouth but outside the membrane electric field.  相似文献   

10.
G Marriott  W R Kirk  N Johnsson  K Weber 《Biochemistry》1990,29(30):7004-7011
The existence of a single tryptophan residue in the protein p36, a member of a recently characterized family of Ca2+ binding proteins called annexins, is exploited to provide unique spectroscopic information on the annexin repeat motif and its role in Ca2+ binding. The differences in ultraviolet absorption and fluorescence excitation upon Ca2+ binding are interpreted solely in terms of this tryptophan, which, in view of the pronounced blue-shifts and the presence of vibronic structure, seems to reside in a highly nonpolar environment. The fluorescence emission from the protein is correspondingly blue-shifted, and it is found to transfer energy in resonance with Tb3+ absorption lines in the near-ultraviolet. This effect allows us to locate the Tb3+ and, by implication, the Ca2+ binding site to within ca. 8 A of the tryptophan residue.  相似文献   

11.
G J Arlaud  J Gagnon 《Biochemistry》1983,22(8):1758-1764
The amino acid sequence of human C1-r b chain hs been determined, from sequence analysis performed on fragments obtained by CNBr cleavage, dilute acid hydrolysis, tryptic cleavage of the succinylated protein, and subcleavages by staphylococcal protease. The polypeptide chain contains 242 amino acids (Mr 27 096), and the sequence shows strong homology with other mammalian serine proteases. The histidine, aspartic acid, and serine residues of the active site (His-57, Asp-102, and Ser-195 in bovine chymotrypsinogen) are located at positions 39, 94, and 191, respectively. The chain which lacks the "histidine-loop" disulfide bridge, contains five half-cystine residues, of which four (positions 157-176 and 187-217) are homologous to residues involved in disulfide bonds generally conserved in serine proteases, whereas the half-cystine residue at position 114 is likely to be involved in the single disulfide bridge connecting the catalytic b chain to the n-terminal a chain. Two carbohydrate moieties are attached to the polypeptide chain, both via asparagine residues at positions 51 and 118.  相似文献   

12.
13.
Interaction of Cu(II) and Gly-His-Lys, a growth-modulating tripeptide from plasma, was investigated by 13C- and 1H-n.m.r. and e.p.r. spectroscopy. The n.m.r. line-broadening was interpreted in terms of major and minor species formed as a function of pH. The results indicate that the n.m.r. line-broadening is due to the presence of minor species in rapid exchange and not due to the major species in solution, which has a large tau M. It is concluded that the technique of 13C- and 1H-n.m.r. line broadening, caused by paramagnetic Cu(II) ion, should be undertaken with caution, since the method may not be useful for obtaining structural information on the major species. The e.p.r. spectra over a wide pH range are almost entirely due to similarly co-ordinating species. Starting at pH 5.5, the narrowest absorption near 340 mT shows superhyperfine structure, which comes out sharply in the pH region 6.0-9.6. The spectra in this pH range showed the seven lines of nitrogen superhyperfine splitting, indicating clearly the co-ordination of three nitrogen atoms to Cu(II). The e.p.r. parameters in the medium pH range, A parallel = 19.5 mT and g parallel = 2.21, fit well with the contention that Cu(II) is ligated to Gly-His-Lys through one oxygen atom and three nitrogen atoms in a square-planar configuration.  相似文献   

14.
Sugita S  Südhof TC 《Biochemistry》2000,39(11):2940-2949
Synaptotagmins represent a family of neuronal proteins thought to function in membrane traffic. The best characterized synaptotagmin, synaptotagmin I, is essential for fast Ca2+-dependent synaptic vesicle exocytosis, indicating a role in the Ca2+ triggering of membrane fusion. Synaptotagmins contain two C2 domains, the C2A and C2B domains, which bind Ca2+ and may mediate their functions by binding to specific targets. For synaptotagmin I, several putative targets have been identified, including the SNARE proteins syntaxin and SNAP-25. However, it is unclear which of the many binding proteins are physiologically relevant. Furthermore, more than 10 highly homologous synaptotagmins are expressed in brain, but it is unknown if they execute similar binding reactions. To address these questions, we have performed a systematic, unbiased study of proteins which bind to the C2A domains of synaptotagmins I-VII. Although the various C2A domains exhibit similar binding activities for phospholipids and syntaxin, we found that they differ greatly in their protein binding patterns. Surprisingly, none of the previously characterized binding proteins for synaptotagmin I are among the major interacting proteins identified. Instead, several proteins that were not known to interact with synaptotagmin I were bound tightly and stoichiometrically, most prominently the NSF homologue VCP, which is thought to be involved in membrane fusion, and an unknown protein of 40 kDa. Point mutations in the Ca2+ binding loops of the C2A domain revealed that the interactions of these proteins with synaptotagmin I were highly specific. Furthermore, a synaptotagmin I/VCP complex could be immunoprecipitated from brain homogenates in a Ca2+-dependent manner, and GST-VCP fusion proteins efficiently captured synaptotagmin I from brain. However, when we investigated the tissue distribution of VCP, we found that, different from synaptic proteins, VCP was not enriched in brain and exhibited no developmental increase paralleling synaptogenesis. Moreover, binding of VCP, which is an ATPase, to synaptotagmin I was inhibited by both ATP and ADP, indicating that the native, nucleotide-occupied state of VCP does not bind to synaptotagmin. Together our findings suggest that the C2A-domains of different synaptotagmins, despite their homology, exhibit a high degree of specificity in their protein interactions. This is direct evidence for diverse roles of the various synaptotagmins in brain, consistent with their differential subcellular localizations. Furthermore, our results indicate that traditional approaches, such as affinity chromatography and immunoprecipitations, are useful tools to evaluate the overall spectrum of binding activity for a protein but are not sufficient to estimate physiological relevance.  相似文献   

15.
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BK(Ca) gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BK(Ca) activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BK(Ca) channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition.  相似文献   

16.
17.
Sr(2+) triggers neurotransmitter release similar to Ca(2+), but less efficiently. We now show that in synaptotagmin 1 knockout mice, the fast component of both Ca(2+)- and Sr(2+)-induced release is selectively impaired, suggesting that both cations partly act by binding to synaptotagmin 1. Both the C(2)A and the C(2)B domain of synaptotagmin 1 bind Ca(2+) in phospholipid complexes, but only the C(2)B domain forms Sr(2+)/phospholipid complexes; therefore, Sr(2+) binding to the C(2)B domain is sufficient to trigger fast release, although with decreased efficacy. Ca(2+) induces binding of the synaptotagmin C(2) domains to SNARE proteins, whereas Sr(2+) even at high concentrations does not. Thus, triggering of the fast component of release by Sr(2+) as a Ca(2+) agonist involves the formation of synaptotagmin/phospholipid complexes, but does not require stimulated SNARE binding.  相似文献   

18.
19.
Myosin-Va is an actin-based processive motor that conveys intracellular cargoes. Synaptic vesicles are one of the most important cargoes for myosin-Va, but the role of mammalian myosin-Va in secretion is less clear than for its yeast homologue, Myo2p. In the current studies, we show that myosin-Va on synaptic vesicles interacts with syntaxin-1A, a t-SNARE involved in exocytosis, at or above 0.3 microM Ca2+. Interference with formation of the syntaxin-1A-myosin-Va complex reduces the exocytotic frequency in chromaffin cells. Surprisingly, the syntaxin-1A-binding site was not in the tail of myosin-Va but rather in the neck, a region that contains calmodulin-binding IQ-motifs. Furthermore, we found that syntaxin-1A binding by myosin-Va in the presence of Ca2+ depends on the release of calmodulin from the myosin-Va neck, allowing syntaxin-1A to occupy the vacant IQ-motif. Using an anti-myosin-Va neck antibody, which blocks this binding, we demonstrated that the step most important for the antibody's inhibitory activity is the late sustained phase, which is involved in supplying readily releasable vesicles. Our results demonstrate that the interaction between myosin-Va and syntaxin-1A is involved in exocytosis and suggest that the myosin-Va neck contributes not only to the large step size but also to the regulation of exocytosis by Ca2+.  相似文献   

20.
Ca2+-dependent phospholipid- (and membrane-) binding proteins   总被引:19,自引:0,他引:19  
C B Klee 《Biochemistry》1988,27(18):6645-6653
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号