首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of experimental conditions were applied with the aim to estimate the correlation between the contribution of ATP synthase to the respiratory flux control and the calcium-induced activation of succinate oxidation in heart mitochondria isolated from rat, rabbit and guinea pig. The sensitivity of respiration in heart mitochondria to the decrease in temperature from 37 degrees C to 28 degrees C decreases in the order rabbit > guinea pig > rat. Ca2+ effect on succinate oxidation rate in state 3 respiration was species- and temperature-dependent and ranged from 0 (rat, 37 degrees C) to +44% (rabbit, 28 degrees C). For mitochondria from all experimental animals, the increase of Ca2+ in physiological range of concentration did not change state 2 respiration rate, and the stimulatory effect of Ca2+ on state 3 respiration was more pronounced at 28 degrees C than at 37 degrees C. The respiratory subsystem was sensitive to Ca2+ ions only in rabbit heart mitochondria. A high positive correlation between Ca2+ ability to stimulate succinate oxidation in state 3 and the control exerted by ATP synthase over the respiratory flux provides argument confirming stimulation of ATP synthase by Ca2+ ions.  相似文献   

2.
1. Mitochondrial Ca2+, accumulated by succinate oxidation was released by addition of 50 microM atractyloside. Beside this Ca2+ efflux, a large oxidation of pyridine nucleotides and sustained membrane depolarization occurs. An absolute requirement for acetate to support Ca2+ release is demonstrated. 2. Membrane de-energization, NAD(P)H oxidation, and Ca2+ efflux as induced by atractyloside were temperature-dependent, since it occurs when mitochondria are incubated at 22 degrees C and was abolished at 4 degrees C. 3. Taking into account this latter, the effects of atractyloside on mitochondrial Ca2+ release appears not to be a simple result of the binding of the inhibitor to adenine nucleotide translocase. 4. It is proposed that the mechanism involved in atractyloside-driven membrane permeability to Ca2+ must be related with the transference of the conformational change of the carrier, to another membrane structure responsible for the maintenance permeability to ions.  相似文献   

3.
The effect of different phenolic antioxidants on mitochondrial Ca2+ capacity (maximum amount of Ca2+ mitochondria can accumulate) was studied. Butylated hydroxytoluene substantially enhanced the Ca2+ capacity in mitochondria oxidizing succinate, butylated hydroxyanisole had a moderate effect while 2,5-di-(t-butyl)- 1,4 benzohydroquinone did not affect Ca2+ capacity at all. The analysis of Ca2+ accumulation in mitochondria oxidizing succinate in the presence of 2,5-di-(t-butyl)-1,4 benzohydroquinone revealed inhibition of the rate of Ca2+ accumulation. This effect was absent when ATP hydrolysis or NAD+-dependent substrate oxidation supported Ca2+ transport. Direct measurements of oxygen consumption revealed the concentration-dependent inhibition of succinate oxidation by increasing concentrations of 2,5-di-(t-butyl)- 1,4 benzohydroquinone. When succinate was substituted by NAD+-dependent respiratory substrates, the Ca2+ capacity of mitochondria with 2,5-di-(t-butyl)-1,4 benzohydroquinone was even higher than in the presence of butylated hydroxytoluene.  相似文献   

4.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

5.
Isolated rat liver mitochondria, energized either by succinate oxidation or by ATP hydrolysis, present a transient increase in the rate of Ca2+ efflux concomitant to NAD(P)H oxidation by hydroperoxides when suspended in a medium containing 3 mM ATP, 4 mM Mg2+ and acetate as permeant anion. This is paralleled by an increase in the steady-state concentration of extramitochondrial Ca2+, a small decrease in delta psi and an increase in the rate of respiration and mitochondrial swelling. With the exception of mitochondrial swelling all other events were found to be reversible. If Ca2+ cycling was prevented by ruthenium red, the changes in delta psi, the rate of respiration and the extent of mitochondrial swelling were significantly diminished. In addition, there was no significant decrease in the content of mitochondrial pyridine nucleotides. Mitochondrial coupling was preserved after a cycle of Ca2+ release and re-uptake under these experimental conditions. It is concluded that hydroperoxide-induced Ca2+ efflux from intact mitochondria is related to the redox state of pyridine nucleotides.  相似文献   

6.
The combined effects of environmental temperature and level of energy intake on plasma concentrations of growth hormone (GH) and prolactin (PRL) have been investigated in 14 week old pigs acclimated to 35 or 10 degrees C on a high (H) or low (L) energy intake (H = 2L). Measurements were made at 15 min intervals between 08.00 and 18.00 hours, after feeding at 17.00 hours on the previous day. Mean values of GH were greater in pigs on the L than H intake and there was a tendency for values to be higher at 35 than 10 degrees C. However, there was wide individual variation within each treatment group and the differences were not statistically significant. Mean PRL concentrations were greater at 35 than 10 degrees C (P less than 0.05). It is concluded that circulating levels of plasma GH do not have a major role in maintaining the differences in growth and morphology of young pigs kept in widely different environmental conditions. However, these differences could be related at least in part to the GH-like properties of PRL.  相似文献   

7.
Incubation of rat liver mitochondria with benzoquinone derivatives in the presence of succinate plus rotenone has been shown to cause NAD(P)H oxidation followed by Ca2+ release. Further investigation revealed: (1)p-Benzoquinone-induced Ca2+ release was not initiated by a collapse of the mitochondrial membrane potential. However, Ca2+ release and subsequent Ca2+ cycling caused limited increased membrane permeability. (2) p-Benzoquinone-induced NAD(P)H oxidation and Ca2+ release were prevented by isocitrate, 3-hydroxybutyrate, and glutamate but not by pyruvate or 2-oxoglutarate. (3) Inhibition of pyruvate and 2-oxoglutarate dehydrogenases by p-benzoquinone was attributed to arylation of the SH groups of the cofactors, CoA and lipoic acid. Isocitrate dehydrogenase was also inhibited by p-benzoquinone, but the cofactors NAD(P)H and Mn2+ protected the enzyme. Glutamate dehydrogenase was not inhibited by p-benzoquinone. (4) Arylation of mitochondrial protein thiols by p-benzoquinone was associated with an inhibition of state 3 respiration, which was attributed to the inactivation of the phosphate translocase. In contrast, state 4 respiration, and the F1.F0-ATPase and ATP/ADP translocase activities were not inhibited. It was concluded that inhibition of mitochondrial NAD(P)H dehydrogenases by arylation of critical thiol groups will decrease the NAD(P)+-reducing capacity, and possibly lower the NAD(P)H/NAD(P)+ redox status in favor of Ca2+ release.  相似文献   

8.
Exposure of rats to elevated temperature of 28 degrees C or 35 degrees C for 3 days six hours daily resulted in a decreased rate of oxidation with succinate or glutamate + malate as substrates, by the mitochondria of liver. The higher decrease was observed in environment temperature of 35 degrees C. There was no change in ADP/O ratio. The activities of NADH: cytochrome c reductase and cytochrome oxidase were stimulated but activities of succinate dehydrogenase and succinate cytochrome reductase were decreased.  相似文献   

9.
It has been previously reported (L?tscher, H. R., Winterhalter, K. H., Carafoli, E., and Richter, C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 4340-4344) that in Ca2+-loaded mitochondria hydroperoxides induce a release of Ca2+ from mitochondria and an irreversible oxidation of mitochondrial pyridine nucleotides. Here we show that in the presence of Ca2+ oxidized mitochondrial pyridine nucleotides are hydrolyzed inside mitochondria and that nicotinamide is released from mitochondria. The extent of the hydrolysis of NAD(P)+ is dependent on the amount of both hydroperoxide and Ca2+. The hydrolysis is reversible in the presence of added nicotinamide. The release of Ca2+ from mitochondria is electroneutral, and is directly or indirectly dependent on oxidized mitochondrial pyridine nucleotides. By contrast, the uptake of Ca2+ most probably does not require the present of reduced pyridine nucleotides. Control experiments show that even under the most drastic conditions employed in this study (100 nmol of Ca2+ and 85 nmol of t-butylhydroperoxide/mg of protein) mitochondria retain a considerable degree of functional integrity.  相似文献   

10.
Adriamycin (AdM) and related anthracyclines are potent antineoplastic agents, the clinical utility of which is limited by severe cardiotoxicity. Aglycone derivatives of AdM have recently been reported to trigger the release of Ca2+ from isolated, preloaded rat heart mitochondria and to modify mitochondrial sulfhydryl (-SH) groups. Both mitochondrial Ca2+ retention and -SH status are sensitive to mitochondrial NAD(P)+/NAD(P)H ratios. This investigation examined the effects of AdM and its aglycone derivatives on the pyridine nucleotide redox status of isolated, intact heart mitochondria with the following results. (i) AdM aglycones induced the slow, Ca2(+)-independent oxidation of mitochondrial NAD(P)H. Oxidation was proportional to aglycone concentration between 5 and 60 microM. (ii) In terms of potency, 7-deoxy AdM aglycone greater than or equal to 7-hydroxy AdM aglycone much greater than AdM. (iii) Inhibitor data suggested that NAD(P)H oxidation reflects the rotenone-insensitive reduction of AdM aglycone and subsequent electron transfer to O2 generating superoxide. (iv) NAD(P)H oxidation mediated by AdM aglycone could be distinguished from the Ca2(+)-dependent NAD(P)H oxidation associated with mitochondrial Ca2+ release. This communication is the first to describe redox interactions of AdM with intact mitochondria.  相似文献   

11.
The distribution of basal and of H2O2-stimulated cyclooxygenase activity in the primary fractions of rat brain homogenates and in the subfractions of crude mitochondrial fraction was studied. For comparison, the localization of H2O2-generating monoamine oxidase (MAO) as well as that of the mitochondrial marker succinate dehydrogenase (SDH) was also examined. H2O2 was generated by MAO using 5 x 10(-4) M noradrenaline (NA) or 2 x 10(-4) M 2-phenylethylamine (PEA) as substrates, or by 25 micrograms glucose oxidase (GOD) per ml in the presence of 1 mM glucose. For nonstimulated (basal) cyclooxygenase, the relative specific activity (RSA) was high in microsomes (1.79) and in the free mitochondria-containing subfraction of the crude mitochondrial fraction (1.94). Parallel distribution of MAO and H2O2-stimulated cyclooxygenase was observed in all fractions studied in the presence of NA. The highest RSA was found in the purified mitochondria for both enzymes (1.85 for MAO and 1.97 for H2O2-stimulated cyclooxygenase). The enrichment of SDH (RSA = 2.21) indicated a high concentration of mitochondria in this fraction. The same distribution of H2O2-stimulated cyclooxygenase was obtained when, instead of the MAO-NA system, hydrogen peroxide was generated by GOD in the presence of glucose. H2O2 generated by deamination of NA or PEA by MAO, or during the enzymatic oxidation of glucose by GOD, caused a threefold increase in mitochondrial endoperoxide formation. Indomethacin (2 x 10(-4) M), catalase (50 micrograms/ml), and pargyline (2 x 10(-4) M) eliminated the MAO-dependent mitochondrial synthesis of PG endoperoxides. The GOD-dependent cyclooxygenase activity in this fraction was abolished by indomethacin or catalase, but not by pargyline. The results show the existence of a mitochondrial cyclooxygenase in brain tissue. The enzyme is sensitive to H2O2 and produces prostaglandin endoperoxides from an endogenous source of arachidonic acid. The identical localization of H2O2-producing MAO and H2O2-sensitive cyclooxygenase suggests a possible coupling between monoamine and arachidonic acid metabolism.  相似文献   

12.
Hydroperoxides have previously been shown to induce Ca2+ release from intact rat liver mitochondria via a specific release pathway. Here it is reported that, in rat brain mitochondria, a hydroperoxide-induced Ca2+ release is also operative but is of minor importance. Hydroperoxide stimulates Ca2+ release in the presence of ruthenium red about twofold at a Ca2+ load of 40 nmol/mg mitochondrial protein. After addition of hydroperoxide, Ca2+ release from brain mitochondria can still be evoked by Na+. In the presence of succinate and rotenone, hydroperoxide induces only a very limited oxidation of pyridine nucleotides, most probably due to the low level of glutathione peroxidase (EC 1.11.1.9) and glutathione reductase (EC 1.6.4.2) found in brain mitochondria. Similar to liver mitochondria, a NADase (EC 3.2.2.5) activity is found in brain mitochondria. Its localization and sensitivity toward ADP and ATP, however, is different from that of the liver mitochondrial enzyme.  相似文献   

13.
In addition to their critical function in energy metabolism, mitochondria contain a permeability transition pore, which is regulated by adenine nucleotides. We investigated conditions required for ATP to induce a permeability transition in mammalian mitochondria. Mitochondrial swelling associated with mitochondria permeability transition (MPT) was initiated by adding succinate to a rat liver mitochondrial suspension containing alloxan, a diabetogenic agent. If alloxan was added immediately with or 5 min after adding succinate, MPT was strikingly decreased. MPT induced by alloxan was inhibited by EGTA and several agents causing thiol oxidation, suggesting that alloxan leads to permeability transition through a mechanism dependent on Ca(2+) uptake and sulfhydryl oxidation. Antimycin A and cyanide, inhibitors of electron transfer, carbonyl cyanide m-chlorophenylhydrazone, and oligomycin all inhibited MPT. During incubation with succinate, alloxan depleted ATP in mitochondria after an initial transient increase. However, in a mitochondrial suspension containing EGTA, ATP significantly increased in the presence of alloxan to a level greater than that of the control. These results suggest the involvement of energized transport of Ca(2+) in the MPT initiation. Addition of exogenous ATP, however, did not trigger MPT in the presence of alloxan and had no effect on MPT induced by alloxan. We conclude that alloxan-induced MPT requires mitochondrial energization, oxidation of protein thiols, and matrix ATP to promote energized uptake of Ca(2+).  相似文献   

14.
We have previously demonstrated in rat liver mitochondria a hydroperoxide-induced hydrolysis of pyridine nucleotides and release of Ca2+ [L?tscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1979) Proc. Natl Acad. Sci. USA 76, 4340-4344, and L?tscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1980) J. Biol. Chem. 255, 9325-9330]. Here we investigate pyridine nucleotide hydrolysis and Ca2+ release under conditions of minimized Ca2+ cycling and with smaller Ca2+ loads. The extent of pyridine nucleotide hydrolysis, measured by pyridine-nucleotide-derived nicotinamide release from intact mitochondria, and the Ca2+ release rate show a very similar sigmoidal dependence on the mitochondrial Ca2+ load. The hydrolysis of oxidized pyridine nucleotides is limited under non-cycling conditions. Whereas pyridine nucleotide hydrolysis as measured by nicotinamide release is extensive, net loss of mitochondrial pyridine nucleotides is observed only at relatively high Ca2+ loads. Our results indicate the ability of mitochondria to resynthesize pyridine nucleotides after hydrolysis. Neither a decrease of reduced, nor an increase of oxidized, mitochondrial glutathione favour Ca2+ release. From these and previous findings it is concluded that the hydroperoxide-induced Ca2+ release is triggered by a factor which is distal to the oxidation of mitochondrial pyridine nucleotides. Ca2+ release is stimulated when the movement of protons across the inner mitochondrial membrane is facilitated, giving evidence for the operation of the hydroperoxide-induced release pathway as a Ca2+/H+ antiport.  相似文献   

15.
Acetoacetate provision to Ca(2+)-loaded liver mitochondria (less than 40 micrograms-ion Ca2+ x g protein-1), supplied with 2 mM Pi and 2-oxoglutarate as substrate, was found to prevent the mitochondrial deenergization and Ca2+ release induced by either rotenone during aerobic incubations or by O2 deprivation. Under the latter condition, the acetoacetate-promoted Ca2+ retention was entirely supported by ATP produced anaerobically at the succinylthiokinase step of the tricarboxylic acid cycle and was therefore abolished by addition of oligomycin. Surprisingly, oligomycin was also found to trigger Ca2+ release in rotenone-inhibited mitochondria in the presence of acetoacetate under aerobic conditions, unless a Pi acceptor was supplied. ADP deprivation at the succinylthiokinase step is likely to be involved. As estimated from rates of succinate production in O2-deprived mitochondria or from respiration rates in rotenone-inhibited mitochondria at supramaximal acetoacetate concentrations (above 1.2 mM) in the presence of a Pi acceptor, ATP production by substrate-level phosphorylation was close to 10 mumol.g protein-1.min-1 and appeared to be limited by rates of ketone body transport across the inner membrane. The rates of anaerobic energy production obtained by coupling 2-oxoglutarate oxidation to acetoacetate reduction were markedly higher than those obtained by reactions involved in the anaerobic metabolism of amino acids, simulated by providing 2-oxoglutarate and malate to mitochondria. Energy production was limited by rates of oxidant equivalent generation under the latter condition. Our data suggest that acetoacetate could effectively contribute to sustaining anaerobic energy production from endogenous substrates in liver tissue.  相似文献   

16.
Influence of a cold (10 degrees C) or warm (35 degrees C) environment and a high or low level of energy intake on respiratory enzyme activities has been investigated in porcine skeletal muscle. Scanning microdensitometry was used to measure the reaction products from mitochondrial enzymes in individual slow- and fast-twitch muscle fibres. A cold environment was found to increase the activity of succinate dehydrogenase in both types of muscle fibre (P less than 0.001 for dark fibres, P less than 0.01 for light fibres) from young growing animals. Enzyme activity was also increased in animals on a low compared with a high energy intake (P less than 0.01) when living at 10 degrees C but not at 35 degrees C. Similar findings were obtained for NADH diaphorase and cytochrome oxidase aa3. The numbers of slow-twitch muscle fibres also increased after exposure to cold (P less than 0.01) and as a result of a low energy intake (P less than 0.01). These results are similar to those obtained in other species after exercise or as a result of peripheral arterial insufficiency. The extent to which they could be related to local tissue hypoxia or to changes in metabolic hormones is discussed.  相似文献   

17.
A series of triphenyl-, tricyclohexyl- and tribenzyltin compounds have been synthesized and examined as inhibitors of mitochondrial oxidative phosphorylation. All compounds tested inhibit oxidative phosphorylation linked to succinate oxidation by potato tuber mitochondria. All of the organotin compounds inhibit ADP-stimulated O2 uptake linked to succinate oxidation with concentrations for 50% inhibition in the range 2-50 microM. This inhibition is not due to inhibition of electron transport from succinate to O2 per se: none of the organotin compounds at 50 microM substantially inhibit the rate of succinate oxidation in the presence of 2,4-dinitrophenol. Representative organotin compounds at 0.5-50 microM do not act as uncouplers of succinate oxidation. It is concluded that the organotin compounds act as energy transfer inhibitors to inhibit oxidative phosphorylation in potato tuber mitochondria. A similar mode of action of representative organotin compounds was found with rat liver mitochondria. These organotin compounds inhibit a hydrophobic Ca2+-dependent plant protein kinase in the absence but not in the presence of thiols.  相似文献   

18.
Incubation of Ca2(+)-loaded rat liver mitochondria with N-acetyl-p-benzoquinone imine (NAPQI) or its two dimethylated analogues resulted in a concentration dependent Ca2+ release, with the following order of potency: 2,6-(Me)2-NAPQI greater than NAPQI greater than 3,5-(Me)2-NAPQI. The quinone imine-induced Ca2+ release was associated with NAD(P)H oxidation and was prevented when NAD(P)+ reduction was stimulated by the addition of 3-hydroxybutyrate. Mitochondrial glutathione was completely depleted within 0.5 min by all three quinone imines, even at low concentrations that did not result in Ca2+ release. Depletion of mitochondrial GSH by pretreatment with 1-chloro-2,4-dinitrobenzene enhanced quinone imine-induced NAD(P)H oxidation and Ca2+ release. However, 3-hydroxybutyrate protected from quinone imine-induced Ca2+ release in GSH-depleted mitochondria. Mitochondrial membrane potential was lost after the addition of quinone imines at concentrations that caused rapid Ca2+ release; however, subsequent addition of EGTA led to the complete recovery of the transmembrane potential. In the absence of Ca2+, the quinone imines caused only a small and transient loss of the transmembrane potential. Taken together, our results suggests that the quinone imine-induced Ca2+ release from mitochondria is a consequence of NAD(P)H oxidation rather than GSH depletion, GSSG formation, or mitochondrial inner membrane damage.  相似文献   

19.
Initial rate measurements of the stoichiometric relationships between H+ ejection, K+ and Ca2+ uptake, and electron transport were carried out on mitochondria from Ehrlich ascites tumor cells grown in mice. With succinate as substrate and N-ethylmaleimide to prevent interfering H+ reuptake via the phosphate carrier, close to 8 H+ were ejected per oxygen atom reduced (H+/O ejection ratio = 8.0); with the NAD-linked substrates pyruvate or pyruvate + malate, the H+/O ejection ratio was close to 12. The average H+/site ratio (H+ ejected/2e-/energy-conserving site) was thus close to 4. The simultaneous uptake of charge-compensating cations, either K+ (in the presence of valinomycin) or Ca2+, was also measured, yielding average K+/site uptake ratios of very close to 4 and Ca2+/site ratios close to 2. It was also demonstrated that each calcium ion enters the respiring tumor mitochondria carrying two positive electric charges. These stoichiometric data observed in mitochondria from Ehrlich ascites tumor cells thus are in complete agreement with similar data on normal rat liver and rat heart mitochondria and suggest that the H+/site ratio of mitochondrial electron transport may be 4 generally. It was also observed that the rate of deltaH+ back-decay in anaerobic tumor mitochondria following oxygen pulses is some 6- to 8-fold greater than in rat liver mitochondria tested at equal amounts of mitochondrial protein.  相似文献   

20.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号