共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genomic Sequence and Evolution of Marine Cyanophage P60: a New Insight on Lytic and Lysogenic Phages 总被引:11,自引:0,他引:11
下载免费PDF全文

The genome of cyanophage P60, a lytic virus which infects marine Synechococcus WH7803, was completely sequenced. The P60 genome contained 47,872 bp with 80 potential open reading frames that were mostly similar to the genes found in lytic phages like T7, phi-YeO3-12, and SIO1. The DNA replication system, consisting of primase-helicase and DNA polymerase, appeared to be more conserved in podoviruses than in siphoviruses and myoviruses, suggesting that DNA replication genes could be the critical elements for lytic phages. Strikingly high sequence similarities in the regions coding for nucleotide metabolism were found between cyanophage P60 and marine unicellular cyanobacteria. 相似文献
3.
The rearrangement of bacterial chromosomes induced by intragenomic recombination is considered. The role of stochastic and programmed genome rearrangements in bacterial adaptation to the environment and in cell differentiation is discussed. 相似文献
4.
Thomas Denes Kitiya Vongkamjan Hans-Wolfgang Ackermann Andrea I. Moreno Switt Martin Wiedmann Henk C. den Bakker 《Applied and environmental microbiology》2014,80(15):4616-4625
The genus Listeria is ubiquitous in the environment and includes the globally important food-borne pathogen Listeria monocytogenes. While the genomic diversity of Listeria has been well studied, considerably less is known about the genomic and morphological diversity of Listeria bacteriophages. In this study, we sequenced and analyzed the genomes of 14 Listeria phages isolated mostly from New York dairy farm environments as well as one related Enterococcus faecalis phage to obtain information on genome characteristics and diversity. We also examined 12 of the phages by electron microscopy to characterize their morphology. These Listeria phages, based on gene orthology and morphology, together with previously sequenced Listeria phages could be classified into five orthoclusters, including one novel orthocluster. One orthocluster (orthocluster I) consists of large-genome (∼135-kb) myoviruses belonging to the genus “Twort-like viruses,” three orthoclusters (orthoclusters II to IV) contain small-genome (36- to 43-kb) siphoviruses with icosahedral heads, and the novel orthocluster V contains medium-sized-genome (∼66-kb) siphoviruses with elongated heads. A novel orthocluster (orthocluster VI) of E. faecalis phages, with medium-sized genomes (∼56 kb), was identified, which grouped together and shares morphological features with the novel Listeria phage orthocluster V. This new group of phages (i.e., orthoclusters V and VI) is composed of putative lytic phages that may prove to be useful in phage-based applications for biocontrol, detection, and therapeutic purposes. 相似文献
5.
Pilar García Beatriz Martínez José María Obeso Rob Lavigne Rudi Lurz Ana Rodríguez 《Applied and environmental microbiology》2009,75(24):7663-7673
The genomes of the two lytic mutant Staphylococcus aureus bacteriophages, vB_SauS-phiIPLA35 (phiIPLA35) and vB_SauS-phiIPLA88 (phiIPLA88), isolated from milk have been analyzed. Their genomes are 45,344 bp and 42,526 bp long, respectively, and contain 62 and 61 open reading frames (ORFS). Enzymatic analyses and sequencing revealed that the phiIPLA35 DNA molecule has 3′-protruding cohesive ends (cos) 10 bp long, whereas phiIPLA88 DNA is 4.5% terminally redundant and most likely is packaged by a headful mechanism. N-terminal amino acid sequencing, mass spectrometry, bioinformatic analyses, and functional analyses enabled the assignment of putative functions to 58 gene products, including DNA packaging proteins, morphogenetic proteins, lysis components, and proteins necessary for DNA recombination, modification, and replication. Point mutations in their lysogeny control-associated genes explain their strictly lytic behavior. Muralytic activity associated with other structural components has been detected in virions of both phages. Comparative analysis of phiIPLA35 and phiIPLA88 genome structures shows that they resemble those of φ12 and φ11, respectively, both representatives of large genomic groupings within the S. aureus-infecting phages.Staphylococcus aureus is an important etiologic agent of food-borne diseases due to its ability to produce heat-resistant staphylococcal enterotoxins (SEs) when it grows in foods. In fact some S. aureus strains may produce up to 20 serologically distinct SEs, which could be responsible for food poisoning (30). SEs have been divided initially into serological types SEA through SEE, and recently the existence of new types of SEs has also been reported (5).S. aureus strains harboring enterotoxin genes have been isolated from a variety of foods (38) including dairy products (9, 46, 56). Mastitis caused by this pathogen and poor hygienic processing conditions are the most important sources of dairy product contamination. Growth of enterotoxigenic S. aureus in both raw milk and dairy products poses a potential health hazard to consumers. In this context, new biocontrol strategies to prevent growth of S. aureus, suitable to be applied in the food industry, are being explored.Currently, there is a renewed interest in exploiting the antimicrobial potential of bacterial viruses for bacterial-control applications in agriculture, aquaculture, and the food industry (11, 18, 23, 49). In fact, the use of phages for the treatment of infectious diseases (or phage therapy) has a long successful history in the countries of Eastern Europe (or former Soviet Union) (50). Specifically, S. aureus bacteriophages have been assayed in the treatment of venous leg ulcers and eye infections (22, 42).Prior to any phage application, genome analysis is a prerequisite to examine the safety of the phages, specifically, traits which might enhance the virulence of the infected bacterium. In addition, genome analysis might uncover novel antibacterial targets or agents (33) with promising biotechnological applications (6). For example, various lytic phage proteins (endolysins) have shown great potential in veterinary and human medicine for the treatment and prophylaxis of infections (12) and have been applied as biocontrol agents in dairy products (36). Several technologies employing phages and endolysins for pathogen detection and decontamination have also been patented (7).To date, genomes of over 47 S. aureus phages are available in public databases. The number of known, strictly lytic phages is limited to the close-knit Myoviridae genus of the SPO1-like viruses, containing phages K, Twort, and G1. Apart from this group, a large number of genomes from unclassified Siphoviridae in lysogenic S. aureus strains are available (26, 37). Some temperate bacteriophages may play an important role in the pathogenicity of S. aureus by carrying virulence factors, mediating lateral gene transfer, and even facilitating the adaptation of the pathogen during infection (1, 21, 52).In previous work, we have characterized phiIPLA35 and phiIPLA88 S. aureus phages (17). These two lytic phages, previously named φ35 and φ88, were selected as mutants of the temperate phages φA72 and φH5, respectively, isolated from raw bovine milk. They belong to the Siphoviridae family of double-stranded DNA bacterial viruses in the order Caudovirales. Remarkably, these phages infect S. aureus of bovine and dairy origin while clinical isolates appear to be resistant. Both phiIPLA35 and phiIPLA88 are very well adapted to the dairy environment and effectively inhibit S. aureus growth in milk and curd-manufacturing processes (17, 20).In this study, we have sequenced and annotated the genomes of both bacteriophages, elucidated their physical genome structures, and identified peptidoglycan hydrolytic activities. Comparative genome analysis also allowed us to put phiIPLA35 and phiIPLA88 into a phylogenetic context. 相似文献
6.
7.
8.
9.
Florent Lassalle Séverine Périan Thomas Bataillon Xavier Nesme Laurent Duret Vincent Daubin 《PLoS genetics》2015,11(2)
The characterization of functional elements in genomes relies on the identification of the footprints of natural selection. In this quest, taking into account neutral evolutionary processes such as mutation and genetic drift is crucial because these forces can generate patterns that may obscure or mimic signatures of selection. In mammals, and probably in many eukaryotes, another such confounding factor called GC-Biased Gene Conversion (gBGC) has been documented. This mechanism generates patterns identical to what is expected under selection for higher GC-content, specifically in highly recombining genomic regions. Recent results have suggested that a mysterious selective force favouring higher GC-content exists in Bacteria but the possibility that it could be gBGC has been excluded. Here, we show that gBGC is probably at work in most if not all bacterial species. First we find a consistent positive relationship between the GC-content of a gene and evidence of intra-genic recombination throughout a broad spectrum of bacterial clades. Second, we show that the evolutionary force responsible for this pattern is acting independently from selection on codon usage, and could potentially interfere with selection in favor of optimal AU-ending codons. A comparison with data from human populations shows that the intensity of gBGC in Bacteria is comparable to what has been reported in mammals. We propose that gBGC is not restricted to sexual Eukaryotes but also widespread among Bacteria and could therefore be an ancestral feature of cellular organisms. We argue that if gBGC occurs in bacteria, it can account for previously unexplained observations, such as the apparent non-equilibrium of base substitution patterns and the heterogeneity of gene composition within bacterial genomes. Because gBGC produces patterns similar to positive selection, it is essential to take this process into account when studying the evolutionary forces at work in bacterial genomes. 相似文献
10.
《Current biology : CB》2014,24(18):R845-R848
11.
Resource availability can affect the coevolutionary dynamics between host and parasites, shaping communities and hence ecosystem function. A key finding from theoretical and in vitro studies is that host resistance evolves to greater levels with increased resources, but the relevance to natural communities is less clear. We took two complementary approaches to investigate the effect of resource availability on the evolution of bacterial resistance to phages in soil. First, we measured the resistance and infectivity of natural communities of soil bacteria and phage in the presence and absence of nutrient-providing plants. Second, we followed the real-time coevolution between defined bacteria and phage populations with resource availability manipulated by the addition or not of an artificial plant root exudate. Increased resource availability resulted in increases in bacterial resistance to phages, but without a concomitant increase in phage infectivity. These results suggest that phages may have a reduced impact on the control of bacterial densities and community composition in stable, high resource environments. 相似文献
12.
Monica Pava-Ripoll Rachel E.G. Pearson Amy K. Miller George C. Ziobro 《Journal of visualized experiments : JoVE》2015,(96)
There is unanimous consensus that insects are important vectors of foodborne pathogens. However, linking insects as vectors of the pathogen causing a particular foodborne illness outbreak has been challenging. This is because insects are not being aseptically collected as part of an environmental sampling program during foodborne outbreak investigations and because there is not a standardized method to detect foodborne bacteria from individual insects. To take a step towards solving this problem, we adapted a protocol from a commercially available PCR-based system that detects foodborne pathogens from food and environmental samples, to detect foodborne pathogens from individual flies.Using this standardized protocol, we surveyed 100 wild-caught flies for the presence of Cronobacter spp., Salmonella enterica, and Listeria monocytogenes and demonstrated that it was possible to detect and further isolate these pathogens from the body surface and the alimentary canal of a single fly. Twenty-two percent of the alimentary canals and 8% of the body surfaces from collected wild flies were positive for at least one of the three foodborne pathogens. The prevalence of Cronobacter spp. on either body part of the flies was statistically higher (19%) than the prevalence of S. enterica (7%) and L.monocytogenes (4%). No false positives were observed when detecting S. enterica and L. monocytogenes using this PCR-based system because pure bacterial cultures were obtained from all PCR-positive results. However, pure Cronobacter colonies were not obtained from about 50% of PCR-positive samples, suggesting that the PCR-based detection system for this pathogen cross-reacts with other Enterobacteriaceae present among the highly complex microbiota carried by wild flies. The standardized protocol presented here will allow laboratories to detect bacterial foodborne pathogens from aseptically collected insects, thereby giving public health officials another line of evidence to find out how the food was contaminated when performing foodborne outbreak investigations. 相似文献
13.
Leighton Pritchard Hui Liu Clare Booth Emma Douglas Patrice Fran?ois Jacques Schrenzel Peter E. Hedley Paul R. J. Birch Ian K. Toth 《PLoS computational biology》2009,5(8)
Microarray comparative genomic hybridisation (aCGH) provides an estimate of the relative abundance of genomic DNA (gDNA) taken from comparator and reference organisms by hybridisation to a microarray containing probes that represent sequences from the reference organism. The experimental method is used in a number of biological applications, including the detection of human chromosomal aberrations, and in comparative genomic analysis of bacterial strains, but optimisation of the analysis is desirable in each problem domain.We present a method for analysis of bacterial aCGH data that encodes spatial information from the reference genome in a hidden Markov model. This technique is the first such method to be validated in comparisons of sequenced bacteria that diverge at the strain and at the genus level: Pectobacterium atrosepticum SCRI1043 (Pba1043) and Dickeya dadantii 3937 (Dda3937); and Lactococcus lactis subsp. lactis IL1403 and L. lactis subsp. cremoris MG1363. In all cases our method is found to outperform common and widely used aCGH analysis methods that do not incorporate spatial information. This analysis is applied to comparisons between commercially important plant pathogenic soft-rotting enterobacteria (SRE) Pba1043, P. atrosepticum SCRI1039, P. carotovorum 193, and Dda3937.Our analysis indicates that it should not be assumed that hybridisation strength is a reliable proxy for sequence identity in aCGH experiments, and robustly extends the applicability of aCGH to bacterial comparisons at the genus level. Our results in the SRE further provide evidence for a dynamic, plastic ‘accessory’ genome, revealing major genomic islands encoding gene products that provide insight into, and may play a direct role in determining, variation amongst the SRE in terms of their environmental survival, host range and aetiology, such as phytotoxin synthesis, multidrug resistance, and nitrogen fixation. 相似文献
14.
James A. Cahill Richard E. Green Tara L. Fulton Mathias Stiller Flora Jay Nikita Ovsyanikov Rauf Salamzade John St. John Ian Stirling Montgomery Slatkin Beth Shapiro 《PLoS genetics》2013,9(3)
Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize. 相似文献
15.
16.
17.
18.
19.
P. H. Dobrowsky M. De Kwaadsteniet T. E. Cloete W. Khan 《Applied and environmental microbiology》2014,80(7):2307-2316
The harvesting of rainwater is gaining acceptance among many governmental authorities in countries such as Australia, Germany, and South Africa, among others. However, conflicting reports on the microbial quality of harvested rainwater have been published. To monitor the presence of potential pathogenic bacteria during high-rainfall periods, rainwater from 29 rainwater tanks was sampled on four occasions (during June and August 2012) in a sustainable housing project in Kleinmond, South Africa. This resulted in the collection of 116 harvested rainwater samples in total throughout the sampling period. The identities of the dominant, indigenous, presumptive pathogenic isolates obtained from the rainwater samples throughout the sampling period were confirmed through universal 16S rRNA PCR, and the results revealed that Pseudomonas (19% of samples) was the dominant genus isolated, followed by Aeromonas (16%), Klebsiella (11%), and Enterobacter (9%). PCR assays employing genus-specific primers also confirmed the presence of Aeromonas spp. (16%), Klebsiella spp. (47%), Legionella spp. (73%), Pseudomonas spp. (13%), Salmonella spp. (6%), Shigella spp. (27%), and Yersinia spp. (28%) in the harvested rainwater samples. In addition, on one sampling occasion, Giardia spp. were detected in 25% of the eight tank water samples analyzed. This study highlights the diverse array of pathogenic bacteria that persist in harvested rainwater during high-rainfall periods. The consumption of untreated harvested rainwater could thus pose a potential significant health threat to consumers, especially children and immunocompromised individuals, and it is recommended that harvested rainwater be treated for safe usage as an alternative water source. 相似文献
20.
A physical map of the chromosome of Neisseria meningitidis strain 44/76, which belongs to the epidemic clone ET-5, was constructed. DNA fragments obtained after SfiI and NheI digestion were resolved by pulsed field gel electrophoresis (PFGE). The overall arrangement of 26 genetic markers localized
on the 2.3-Mb chromosome was conserved in comparison with that in meningococcal strains B1940 and Z2491. Simplified physical
maps of 29 additional strains belonging to the ET-5 complex isolated from various parts of the world were compared with that
of strain 44/76. Ten distinct patterns of hybridization were identified. While two of the seven probes hybridized to fragments
of the same size in all strains, the remaining probes hybridized to different fragments, in some cases to fragments not adjacent
on the chromosome of 44/76. These results indicated the occurrence of genetic rearrangements in the genome of the ET-5 meningococcal
clone in the course of its epidemic spread.
Received: 17 November 1999 / Accepted: 28 December 1999 相似文献