首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural effects of cocaine on neural systems mediating cognition and motivation are not well known. By comparing the thickness of neocortical and paralimbic brain regions between cocaine-dependent and matched control subjects, we found that four of 18 a priori regions involved with executive regulation of reward and attention were significantly thinner in addicts. Correlations were significant between thinner prefrontal cortex and reduced keypresses during judgment and decision making of relative preference in addicts, suggesting one basis for restricted behavioral repertoires in drug dependence. Reduced effortful attention performance in addicts also correlated with thinner paralimbic cortices. Some thickness differences in addicts were correlated with cocaine use independent of nicotine and alcohol, but addicts also showed diminished thickness heterogeneity and altered hemispheric thickness asymmetry. These observations suggest that brain structure abnormalities in addicts are related in part to drug use and in part to predisposition toward addiction.  相似文献   

2.
K Graham  G Koren 《CMAJ》1991,144(5):563-568
OBJECTIVE: To determine the characteristics of pregnant women exposed to cocaine. DESIGN: Case-control study. SETTING: Women attending the Motherisk Program, Hospital for Sick Children, Toronto, from September 1985 to March 1990. PATIENTS: All women who had admitted using cocaine before or during pregnancy. Of the two control groups the first comprised women who had admitted using cannabinoids but not cocaine before or during pregnancy and the second those who attended the clinic just before the cocaine case but who had not used illicit drugs. OUTCOME MEASURES: Age, marital status, ethnic background, number of pregnancies, children and elective or spontaneous abortions, socioeconomic status of woman and male partner, alcohol use, cigarette use, frequency of cocaine use and total amount taken. MAIN RESULTS: Of the 1625 women 91 (5.6%) admitted to using cocaine: 86 during the current pregnancy, 3 before the current pregnancy, 1 before planning a pregnancy and 1 during a previous pregnancy. None of the cocaine users were considered to be addicts; only 20% had used the drug more than 10 times. A total of 74 women used cannabinoids only. The mean age of the cocaine users was 27.1 (standard deviation [SD] 5.3) years; this was significantly lower than that of the control subjects (30.5 [SD 5.2] years) (p less than 0.001). More of the cocaine users than of the women in either of the two control groups were single (60% v. 38% and 14%, p less than 0.001). The cannabinoid users had significantly higher parity and the nonusers a significantly lower incidence of elective abortions than the cocaine users. The cocaine users had a significantly lower socioeconomic status than the control subjects (p less than 0.001); similarly, the male partners of the cocaine users had a significantly lower socioeconomic status than the partners of the control subjects (p = 0.001). CONCLUSIONS: Pregnant cocaine users who seek drug counselling represent a unique risk group, with clustering of factors such as alcohol and cigarette use and low socioeconomic status that compound the risk to the fetus. New strategies should be explored to identify such women, especially addicts, in their communities and to urge them to seek counselling and treatment.  相似文献   

3.
4.
Abstract: Clinical and preclinical evidence supports a possible role for thyrotropin-releasing hormone (TRH) in cocaine action. However, the interaction between cocaine and TRH has not been directly examined. In the following report we describe a solution hybridization RNase protection assay that can sensitively detect mRNA for the TRH precursor, prepro-TRH (ppTRH). Using this assay, we examined ppTRH mRNA levels in rat brain regions implicated in cocaine reinforcement, including the nucleus accumbens, hypothalamus, amygdala, hippocampus, and thalamus. Acute cocaine treatment (15 mg/kg) resulted in significant decreases in ppTRH mRNA levels in the amygdala and hippocampus, but not in the hypothalamus, nucleus accumbens, or thalamus, 45 min postinjection. Chronic cocaine treatment (15 mg/kg twice daily for 14 days) resulted in marked regulation in all regions but the thalamus. Regulation was strongly dependent on the length of cocaine withdrawal and persisted up to 72 h postinjection in the amygdala. These studies support the hypothesis that TRH or other ppTRH-derived peptides are involved in cocaine action, especially in the extrahypothalamic regions of the amygdala and hippocampus.  相似文献   

5.
Humans and laboratory animals remain highly vulnerable to relapse to cocaine-seeking after prolonged periods of withdrawal from the drug. It has been hypothesized that this persistent cocaine relapse vulnerability involves drug-induced alterations in glutamatergic synapses within the mesolimbic dopamine reward system. Previous studies have shown that cocaine self-administration induces long-lasting neuroadaptations in glutamate neurons of the ventral tegmental area and nucleus accumbens. Here, we determined the effect of cocaine self-administration and subsequent withdrawal on glutamate receptor expression in the amygdala, a component of the mesolimbic dopamine system that is involved in cocaine seeking and craving induced by drug-associated cues. Rats were trained for 10 days to self-administer intravenous cocaine (6 h/day) or saline (a control condition) and were killed after one or 30 withdrawal days. Basolateral and central amygdala tissues were assayed for protein expression of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunits (GluR1 and GluR2) and the NMDA receptor subunits (NR1, NR2A and NR2B). In the basolateral amygdala, GluR1 but not GluR2 levels were increased on days 1 and 30, NR2A levels were increased on day 1, and NR2B levels were decreased on day 30 of withdrawal from cocaine. In the central amygdala, GluR2 but not GluR1 levels were increased on days 1 and 30, NR1 levels were increased on day 30 and NR2A or NR2B levels were not altered after withdrawal from cocaine. These results indicate that cocaine self-administration and subsequent withdrawal induces long-lasting and differential neuroadaptations in basolateral and central amygdala glutamate receptors.  相似文献   

6.
Wu P  Xue YX  Ding ZB  Xue LF  Xu CM  Lu L 《Journal of neurochemistry》2011,118(1):113-125
Exposure to cocaine-associated conditioned stimuli elicits craving and increases the probability of cocaine relapse in cocaine users even after extended periods of abstinence. Recent evidence indicates that cocaine seeking can be inhibited by disrupting the reconsolidation of the cocaine cue memories and that basolateral amygdala (BLA) neuronal activity plays a role in this effect. Previous studies demonstrated that glycogen synthase kinase 3β (GSK-3β) plays a role in the reconsolidation of fear memory. Here, we used a conditioned place preference procedure to examine the role of GSK-3β in the BLA in the reconsolidation of cocaine cue memories. GSK-3β activity in the BLA, but not central amygdala (CeA), in rats that acquired cocaine (10 mg/kg)-induced conditioned place preference increased after re-exposure to a previously cocaine-paired chamber (i.e., a memory reactivation procedure). Systemic injections of the GSK-3β inhibitor lithium chloride after memory reactivation impaired the reconsolidation of cocaine cue memories and inhibited subsequent cue-induced GSK-3β activity in the BLA. Basolateral amygdala, but not central amygdala, injections of SB216763, a selective inhibitor of GSK-3β, immediately after the reactivation of cocaine cue memories also disrupted cocaine cue memory reconsolidation and prevented cue-induced increases in GSK-3β activity in the BLA. The effect of SB216763 on the reconsolidation of cocaine cue memories lasted at least 2 weeks and was not recovered by a cocaine priming injection. These results indicate that GSK-3β activity in the BLA mediates the reconsolidation of cocaine cue memories.  相似文献   

7.
Protein kinase B (also known as Akt) signaling regulates dopamine-mediated locomotor behaviors. Here the ability of cocaine to regulate Akt and glycogen synthase kinase 3 (GSK3) was studied. Rats were injected with cocaine or saline in a binge-pattern, which consisted of three daily injections of 15 mg/kg cocaine or 1 mL/kg saline spaced 1 h apart for 1, 3, or 14 days. Amygdala, nucleus accumbens, caudate putamen, and hippocampus tissues were dissected 30 min following the last injection and analyzed for phosphorylated and total Akt and GSK3(alpha and beta) protein levels using western blot analysis. Phosphorylation of Akt on the threonine-308 (Thr308) residue was significantly reduced in the nucleus accumbens and increased in the amygdala after 1 day of cocaine treatment; however, these effects were not accompanied by a significant decrease in GSK3 phosphorylation. Phosphorylation of Akt and GSK3 was significantly reduced after 14 days of cocaine administration, an effect that was only observed in the amygdala. Cocaine did not alter Akt or GSK3 phosphorylation in the caudate putamen or hippocampus. The findings in nucleus accumbens may reflect dopaminergic motor-stimulant activity caused by acute cocaine, whereas the effects in amygdala may be associated with changes in emotional state that occur after acute and chronic cocaine exposure.  相似文献   

8.
Sensory systems play an important role in cocaine addiction, perhaps most clearly demonstrated when stimuli (‘cues’) associated via classical conditioning with the effects of the drug, trigger craving and relapse. It has been shown in previous studies that administration of cocaine can enhance evoked responses in the primary sensory cortex of experimental animals. Given that the speed of learning in classical conditioning is affected by the intensity of the conditioned stimulus (CS), and that cocaine enhances the neural representation of sensory stimuli in the primary sensory cortex in a manner similar to an increase in intensity, we hypothesise that cue-induced craving in human addicts is facilitated by the drug. In short, cocaine speeds the process that leads to craving. This hypothesis is supported by the fact that cocaine enhances sensory responses in humans and leads to an improvement in attention (the putative intermediary between enhanced sensory responses and facilitated learning). Furthermore, cocaine affects neural loci which are known to play a role in learning and facilitates classical conditioning when present during acquisition. In addition, related drugs like d-amphetamine and ecstasy (which themselves produce craving) affect sensory processing and attention, and in the case of d-amphetamine facilitate human learning. It is therefore possible that cocaine itself plays a – previously under-appreciated – role in the formation of associations between drug and drug-related environmental cues by enhancing primary sensory responses. A corollary of this is that, as with other intense CSs, the established association may be particularly resistant to extinction, potentially explaining why cues continue to elicit craving months or even years after the last cocaine use.  相似文献   

9.
10.
Results of MRI volumetry in Borderline Personality Disorder (BPD) are inconsistent. Some, but not all, studies reported decreased hippocampus, amygdala, and/or prefrontal volumes. In the current study, we used rater-independent voxel-based morphometry (VBM) in 33 female BPD patients and 33 healthy women. We measured gray matter (GM) volumes of the whole brain and of three volumes of interest (VOI), i.e., the hippocampus/parahippocampal gyrus, the amygdala and the anterior cingulate gyrus (ACC). Analyses were conducted using lifetime diagnoses of posttraumatic stress disorder (PTSD) and major depression (MD) as covariates. We used adversive childhood experiences and the numbers of BPD criteria (as an indicator of disorder severity) to investigate associations with GM volumes. We did not find volume differences between BPD patients and healthy subject, neither of the whole brain nor of the three VOIs, independent of presence or absence of comorbid PTSD and MD. We also did not find a relationship between childhood maltreatment and the patients’ brain volumes. However, within the patient group, the number of BPD criteria fulfilled was inversely correlated with left hippocampal/parahippocampal volume (x=-32, y=-23, z=-18, k=496, t=5.08, p=.007). Consequently, mesiotemporal GM volumes do not seem to differentiate patients from healthy subjects, but might be associated with symptom severity within the BPD group.  相似文献   

11.
One of the mechanisms of cocaine's actions in the central nervous system is its antidepressant action. This effect might be responsible for increased usage of the drug by individuals with mood disorders. Higher endogenous levels of the excitatory neurosteroid dehydroepiandrosterone sulfate (DHEAS) were reported to correlate with successful abstinence from cocaine use in addicts, but a clinical trial showed that supplementation with a high dose of DHEA increased cocaine usage instead. Such ambiguous effects of DHEA(S) could potentially be linked to its influence on the antidepressant effect of cocaine. In this study we tested DHEAS and its metabolite, androsterone, for interactions with cocaine in animal model of depression (forced swim test) and examined the effects of both steroids and cocaine on serotoninergic neurotransmission. All substances were also tested for influence on locomotor activity. A cocaine dose of 5 mg/kg, which had no significant effect on locomotor activity, was chosen for the forced swim test. Neither DHEAS nor androsterone showed any antidepressant action in this test, while cocaine manifested a clear antidepressant effect. Androsterone slightly reduced the antidepressant influence of cocaine while DHEAS markedly, dose-dependently enhanced it. Such an effect might be caused by the influence of DHEAS on serotonin neurotransmission, as this steroid decreased serotonin concentration and turnover in the striatum. When DHEAS and cocaine were administered together, the levels of serotonin in the striatum and hippocampus remained unchanged. This phenomenon may explain the additive antidepressant action of DHEAS and cocaine and why co-administration of DHEAS and cocaine increases drug use.  相似文献   

12.
We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA‐Seq data from ‘BrainSpan’ was obtained across 16 brain regions from nine control adults. We also generated RNA‐Seq data from postmortem hippocampus from eight alcoholics, eight cocaine addicts and eight controls. Expression analyses were undertaken of 28 genes encoding glutamate ionotropic (AMPA, kainate, NMDA) and metabotropic receptor subunits, together with glutamate transporters. The expression of each gene was fairly consistent across the brain with the exception of the cerebellum, the thalamic mediodorsal nucleus and the striatum. GRIN1, encoding the essential NMDA subunit, had the highest expression across all brain regions. Six factors accounted for 84% of the variance in global gene expression. GRIN2B (encoding GluN2B), was up‐regulated in both alcoholics and cocaine addicts (FDR corrected P = 0.008). Alcoholics showed up‐regulation of three genes relative to controls and cocaine addicts: GRIA4 (encoding GluA4), GRIK3 (GluR7) and GRM4 (mGluR4). Expression of both GRM3 (mGluR3) and GRIN2D (GluN2D) was up‐regulated in alcoholics and down‐regulated in cocaine addicts relative to controls. Glutamatergic genes are moderately to highly expressed throughout the brain. Six factors explain nearly all the variance in global gene expression. At least in the hippocampus, chronic alcohol use largely up‐regulates glutamatergic genes. The NMDA GluN2B receptor subunit might be implicated in a common pathway to addiction, possibly in conjunction with the GABAB1 receptor subunit.  相似文献   

13.
Knowledge of amygdalar and hippocampal development as they pertain to sex differences and laterality would help to understand not only brain development but also the relationship between brain volume and brain functions. However, few studies investigated development of these two regions, especially during infancy. The purpose of this study was to examine typical volumetric trajectories of amygdala and hippocampus from infancy to early adulthood by predicting sexual dimorphism and laterality. We performed a cross-sectional morphometric MRI study of amygdalar and hippocampal growth from 1 month to 25 years old, using 109 healthy individuals. The findings indicated significant non-linear age-related volume changes, especially during the first few years of life, in both the amygdala and hippocampus regardless of sex. The peak ages of amygdalar and hippocampal volumes came at the timing of preadolescence (9–11 years old). The female amygdala reached its peak age about one year and a half earlier than the male amygdala did. In addition, its rate of growth change decreased earlier in the females. Furthermore, both females and males displayed rightward laterality in the hippocampus, but only the males in the amygdala. The robust growth of the amygdala and hippocampus during infancy highlight the importance of this period for neural and functional development. The sex differences and laterality during development of these two regions suggest that sex-related factors such as sex hormones and functional laterality might affect brain development.  相似文献   

14.
An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users) whereas others are discontent (dissonant users). Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli) and stimuli associated with the terminal stage (END-smoking-stimuli) of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula) in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex) compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli) are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli) seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant smokers experience difficulties in translating their attitudes into an actual behavior change.  相似文献   

15.
Cocaine cues elicit craving and physiological responses. The cerebral circuits involved in these are poorly understood. The purpose of this study was to assess the relation between regional brain activation and cocaine cue elicited responses. Thirteen right-handed cocaine abusers were scanned with positron emission tomography (PET) and [F-18] fluorodeoxyglucose (FDG) twice; during an interactive interview about neutral themes and during an interactive interview about cocaine themes designed to elicit cocaine craving. In parallel the behavioral (rated from 0: felt nothing to 10: felt extreme) and cardiovascular responses were recorded. During the cocaine theme interview subjects reported higher self reports for cocaine craving (+2.5+/-3.3, p < or = 0.02) and had higher heart rates (+4.7+/-7.2%, p < or = 0.001), systolic (+4+/-4%, p < or = 0.0001), and diastolic blood pressures (+2.6+/-3.8%, p < or = 0.003) than during the neutral interview. Absolute and relative metabolic values in the orbitofrontal (+16.4+/-17.1%, p < or = 0.005; +11.3+/-14.3%, p < or = 0.008) and left insular cortex (+21.6+/-19.6%, p < or = 0.002; +16.7+/-19.7%, p < or = 0.01) and relative values in cerebellum (+17.9+/-14.8%, p < or = 0.0008) were higher during the cocaine theme than during the neutral theme interview. Relative metabolic values in the right insular region (p < or = 0.0008) were significantly correlated with self reports of cocaine craving. Activation of the temporal insula, a brain region involved with autonomic control, and of the orbitofrontal cortex, a brain region involved with expectancy and reinforcing salience of stimuli, during the cocaine theme support their involvement with craving in cocaine addicted subjects.  相似文献   

16.

Objectives

We aimed to 1) determine if subcortical volume deficits are common to mesial temporal lobe epilepsy (MTLE) patients and their unaffected siblings 2) assess the suitability of subcortical volumetric traits as endophenotypes for MTLE.

Methods

MRI-based volume measurements of the hippocampus, amygdala, thalamus, caudate, putamen and pallidium were generated using an automated brain reconstruction method (FreeSurfer) for 101 unrelated ‘sporadic’ MTLE patients [70 with hippocampal sclerosis (MTLE+HS), 31 with MRI-negative TLE], 83 unaffected full siblings of patients and 86 healthy control subjects. Changes in the volume of subcortical structures in patients and their unaffected siblings were determined by comparison with healthy controls. Narrow sense heritability was estimated ipsilateral and contralateral to the side of seizure activity.

Results

MTLE+HS patients displayed significant volume deficits across the hippocampus, amygdala and thalamus ipsilaterally. In addition, volume loss was detected in the putamen bilaterally. These volume deficits were not present in the unaffected siblings of MTLE+HS patients. Ipsilaterally, the heritability estimates were dramatically reduced for the volume of the hippocampus, thalamus and putamen but remained in the expected range for the amygdala. MRI-negative TLE patients and their unaffected siblings showed no significant volume changes across the same structures and heritability estimates were comparable with calculations from a healthy population.

Conclusions

The findings indicate that volume deficits for many subcortical structures in ‘sporadic’ MTLE+HS are not heritable and likely related to acquired factors. Therefore, they do not represent suitable endophenotypes for MTLE+HS. The findings also support the view that, at a neuroanatomical level, MTLE+HS and MRI-negative TLE represent two distinct forms of MTLE.  相似文献   

17.
Chronic exposure to psychostimulants induces neuro-adaptations in ion channel function of dopamine (DA)-innervated cells localized within the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Although neuroplasticity in ion channel function is initially found in drug-sensitized animals, it has recently been believed to underlie the withdrawal effects of cocaine, including craving that leads to relapse in human addicts. Recent studies have also revealed remarkable differences in altered ion channel activities between mPFC pyramidal neurons and medium spiny NAc neurons in cocaine-withdrawn animals. In response to psychostimulant or certain “excitatory” stimuli, increased intrinsic excitability is found in mPFC pyramidal neurons, whereas decreased excitability is observed in medium spiny NAc cells in drug-withdrawn animals compared to drug-free control animals. These changes in ion channel function are modulated by interrupted DA/Ca2+ signaling with decreased DA D2 receptor function but increased D1 receptor signaling. More importantly, they are correlated to behavioral changes in cocaine-withdrawn human addicts and sensitized animals. Based on growing evidence, researchers have proposed that cocaine-induced neuro-adaptations in ion channel activity and DA/Ca2+ signaling in mPFC pyramidal neurons and medium spiny NAc cells may be the fundamental cellular mechanism underlying the cocaine withdrawal effects observed in human addicts.  相似文献   

18.
Major depression in the elderly is associated with brain structural changes and vascular lesions. Changes in the subcortical regions of the limbic system have also been noted. Studies examining hippocampus volumetric differences in depression have shown variable results, possibly due to any volume differences being secondary to local shape changes rather than differences in the overall volume. Shape analysis offers the potential to detect such changes. The present study applied spherical harmonic (SPHARM) shape analysis to the left and right hippocampi of 61 elderly subjects with major depression and 43 non-depressed elderly subjects. Statistical models controlling for age, sex, and total cerebral volume showed a significant reduction in depressed compared with control subjects in the left hippocampus (F(1,103) = 5.26; p = 0.0240) but not right hippocampus volume (F(1,103) = 0.41; p = 0.5213). Shape analysis showed significant differences in the mid-body of the left (but not the right) hippocampus between depressed and controls. When the depressed group was dichotomized into those whose depression was remitted at time of imaging and those who were unremitted, the shape comparison showed remitted subjects to be indistinguishable from controls (both sides) while the unremitted subjects differed in the midbody and the lateral side near the head. Hippocampal volume showed no difference between controls and remitted subjects but nonremitted subjects had significantly smaller left hippocampal volumes with no significant group differences in the right hippocampus. These findings may provide support to other reports of neurogenic effects of antidepressants and their relation to successful treatment for depressive symptoms.  相似文献   

19.
F Martinez  R R Watson 《Life sciences》1990,47(15):PL59-PL64
Elevated serum levels of IgG are amongst the immunological abnormalities exhibited by intravenous drug addicts. We therefore addressed the hypothesis that cocaine and morphine (the major metabolite of heroin) exert a direct effect on human B cell function in vitro. Human peripheral blood mononuclear cells from normal individuals were incubated for 7 days with the T cell-dependent B cell activator pokeweed mitogen (PWM) and serial dilutions of either cocaine or morphine. At the end of this time total IgG was measured by use of a sandwich ELISA incorporating a biotin-labelled affinity-purified anti-IgG and streptavidin peroxidase. At concentrations relevant to those found in plasma, morphine and cocaine did not affect PWM-stimulated IgG synthesis in vitro. We suggest that these drugs of abuse do not directly influence human B cells, but in vivo exert immune modulatory effects via indirect mechanisms.  相似文献   

20.
Cocaine addiction is characterized by impulsivity, impaired social relationships, and abnormal mesocorticolimbic reward processing, but their interrelationships relative to stages of cocaine addiction are unclear. We assessed blood-oxygenation-level dependent (BOLD) signal in ventral and dorsal striatum during functional magnetic resonance imaging (fMRI) in current (CCD; n?=?30) and former (FCD; n?=?28) cocaine dependent subjects as well as healthy control (HC; n?=?31) subjects while playing an interactive competitive Domino game involving risk-taking and reward/punishment processing. Out-of-scanner impulsivity-related measures were also collected. Although both FCD and CCD subjects scored significantly higher on impulsivity-related measures than did HC subjects, only FCD subjects had differences in striatal activation, specifically showing hypoactivation during their response to gains versus losses in right dorsal caudate, a brain region linked to habituation, cocaine craving and addiction maintenance. Right caudate activity in FCD subjects also correlated negatively with impulsivity-related measures of self-reported compulsivity and sensitivity to reward. These findings suggest that remitted cocaine dependence is associated with striatal dysfunction during social reward processing in a manner linked to compulsivity and reward sensitivity measures. Future research should investigate the extent to which such differences might reflect underlying vulnerabilities linked to cocaine-using propensities (e.g., relapses).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号