首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Matrix metalloproteinase (MMP)-19 and MMP-20 (enamelysin) are two recently discovered members of the MMP family. These enzymes are involved in the degradation of the various components of the extracellular matrix (ECM) during development, haemostasis and pathological conditions. Whereas MMP-19 mRNA is found widely expressed in body tissues, including the synovium of normal and rheumatoid arthritic patients, MMP-20 expression is restricted to the enamel organ. In this study we investigated the ability of MMP-19 and MMP-20 to cleave two of the macromolecules characterising the cartilage ECM, namely aggrecan and the cartilage oligomeric matrix protein (COMP). Both MMPs hydrolysed aggrecan efficiently at the well-described MMP cleavage site between residues Asn(341) and Phe(342), as shown by Western blotting using neo-epitope antibodies. Furthermore, the two enzymes cleaved COMP in a distinctive manner, generating a major proteolytic product of 60 kDa. Our results suggest that MMP-19 may participate in the degradation of aggrecan and COMP in arthritic disease, whereas MMP-20, due to its unique expression pattern, may primarily be involved in the turnover of these molecules during tooth development.  相似文献   

2.
Ceramide participates in signal transduction of IL-1 and TNF, two cytokines likely involved in cartilage degradation in osteoarthritis. We previously showed that ceramide stimulates proteoglycan degradation, mRNA expression of matrix metalloproteinase (MMP)-1, -3, and -13, and pro-MMP-3 production in rabbit cartilage. Since aggrecan, the main cartilage proteoglycan, can be cleaved by metalloproteinases both of MMP and aggrecanase type, the aim of this study was to determine if ceramide stimulates aggrecanase action and, if that is the case, in which measure aggrecanase mediates the degradative effect of ceramide. To this end, antibodies were used against the C terminal aggrecan neoepitopes generated by aggrecanases (NITEGE(373)) and MMPs (DIPEN(341)). Ceramide C(2) at 10(-5) to 10(-4) M dose-dependently increased NITEGE signal, without changing that of DIPEN, in cultured explants of rabbit cartilage. The effects of 10(-4) M C(2) on NITEGE signal and proteoglycan degradation were similarly antagonized by the metalloproteinase inhibitor batimastat, with return to the basal level at 10(-6) M. These results show that, similarly to IL-1 and TNF, ceramide-induced aggrecan degradation is mainly due to aggrecanases. That no increase of MMP activity was detected, despite stimulation of MMP expression, was probably due to lack of proenzyme conversion to mature form, since addition of a MMP activator to C(2)-treated cartilage increased both DIPEN signal and proteoglycan degradation. These findings support the hypothesis that cytokine-induced ceramide could play a mediatory role in situations of increased degradation of cartilage matrix.  相似文献   

3.
c-Fos/AP-1 controls the expression of inflammatory cytokines and matrix-degrading matrix metalloproteinases (MMPs) important in arthritis via promoter AP-1 binding motif. Among inflammatory cytokines, IL-1β is the most important inducer of a variety of MMPs, and mainly responsible for cartilage breakdown and osteoclastogenesis. IL-1β and c-Fos/AP-1 influence each other’s gene expression and activity, resulting in an orchestrated cross-talk that is crucial to arthritic joint destruction, where TNFα can act synergistically with them. While how to stop the degradation of bone and cartilage, i.e., to control MMP, has long been the central issue in the research of rheumatoid arthritis (RA), selective inhibition of c-Fos/AP-1 does resolve arthritic joint destruction. Thus, the blockade of IL-1β and/or c-Fos/AP-1 can be promising as an effective therapy for rheumatoid joint destruction in addition to the currently available TNFα blocking agents that act mainly on arthritis.  相似文献   

4.
There is strong evidence that matrix metalloproteinases (MMPs) play a crucial role during osteogenesis and bone remodelling. Their synthesis by osteoblasts has been demonstrated during osteoid degradation prior to resorption of mineralised matrix by osteoclasts and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). For this study we developed and utilised specific polyclonal antibodies to assess the presence of collagenase (MMP13), stromelysin 1 (MMP3), gelatinase A (MMP2), gelatinase B (MMP9) and TIMP-2 in both freshly isolated neonatal mouse calvariae and tissues cultured with and without bone-resorbing agents. Monensin was added towards the end of the culture period in order to promote intracellular accumulation of proteins and facilitate antigen detection. In addition, bone sections were stained for the osteoclast marker, tartrate-resistant acid phosphatase (TRAP). In uncultured tissues the bone surfaces had isolated foci of collagenase staining, and cartilage matrix stained for gelatinase B (MMP9) and TIMP-2. Calvariae cultured for as little as 3 h with monensin revealed intracellular staining for MMPs and TIMP-2 in mesenchymal tissues, as well as in cells lining the bone plates. The addition of cytokines to stimulate bone resorption resulted in pronounced TRAP activity along bone surfaces, indicating active resorption. There was a marked upregulation of enzyme synthesis, with matrix staining for collagenase and gelatinase B observed in regions of eroded bone. Increased staining for TIMP-2 was also observed in association with increased synthesis of MMPs. The new antibodies to murine MMPs should prove valuable in future studies of matrix degradation.  相似文献   

5.
Molecular mechanisms involved in mediating alteration in cell matrix interaction have been examined by studying the changes in the activity of matrix metalloproteinases (MMPs) in CCl4-induced regenerating liver, using zymography and ELISA. Activity of MMPs (72 kD, 92 kD and 130 kD gelatinases) in the rat liver increased progressively during acute injury till the 4th day and then decreased to near normal level after CCl4 administration (0.5 ml/100 g body wt.) on the 6th day. Hepatocyte lysate of injured liver on the 4th day showed significantly higher levels of MMP2 and MMP9 compared to the control. In the culture medium of hepatocytes, the levels of MMP2 and MMP9 increased progressively with the duration of culture, indicating that hepatocytes are the major source of these MMPs in regenerating liver. These results suggest an involvement of MMPs in matrix degradation and remodeling during regeneration after acute liver injury induced by CCl4.  相似文献   

6.
目的:探讨锌转运蛋白ZIP8在骨关节炎患者中的表达及其对软骨细胞生长及基质金属蛋白酶(MMPs)表达的影响。方法:收集20例骨关节炎患者(OA组)和20例非骨关节炎患者(对照组)血清和软骨组织;采用原子吸收分光光度计测定患者血清和软骨组织中锌离子的表达水平;MTT方法检测软骨细胞的生长活力;采用小RNA干扰沉默ZIP8基因的表达;实时荧光定量PCR方法检测ZIP8及金属基质蛋白酶MMP3、MMP9、MMP12和MMP13等基因的m RNA表达水平;蛋白免疫印迹检测ZIP8及MMP3、MMP9、MMP12和MMP13等蛋白的表达水平。结果:OA组的血清和软骨组织中的锌离子浓度明显高于对照组(P0.01)。OA组软骨组织中ZIP8的m RNA(P0.05)和蛋白(P0.01)表达水平显著高于对照组。ZIP8小RNA干扰片段可以有效的沉默ZIP的基因表达(P0.01);沉默ZIP8的表达促进骨关节炎患者来源的软骨细胞的生长(P0.05),并且降低基质金属蛋白酶包括MMP3,MMP9,MMP12和MMP13的表达水平(P0.05)。结论:ZIP8与骨关节炎密切相关,沉默ZIP8的表达可以提高软骨细胞的生长活力,并且抑制基质金属蛋白酶的表达,为骨关节炎的治疗提供了新的靶点。  相似文献   

7.
To clarify the mechanism of cartilage degradation induced by mechanical stress, we investigated the influence of cyclic tension force (CTF) on the metabolism of cultured chondrocytes. The chondrocytes were exposed to CTF using a Flexercell strain unit. Five or 15 kPa of high frequency CTF significantly inhibited the syntheses of DNA, proteoglycan, collagen, and protein. Fifteen kPa of high frequency CTF induced the expression of interleukin-1 (IL-1), matrix metalloproteinase (MMP)-2 and -9 mRNA, and increased the production of pro- and active-MMP-9. The degradation of proteoglycan was inhibited by and MMP inhibitor, indicating that MMPs are involved in the degradation of proteoglycans induced by high frequency CTF. Moreover, reducing the frequency of CTF from high to low decreased the inhibition of proteoglycan synthesis. These findings suggest that the CTF frequency is one of the key determinants of chondrocyte metabolism. Low magnitude CTF, whether high or low frequency, did not cause the gene expression of cartilage degradation factors, suggesting that this CTF magnitude causes only minor changes in the cartilage matrix. High magnitude and frequency CTF caused the gene expression of IL-1 and MMP-9, followed by increases in the production of MMP-2 and -9 proteins, suggesting that excessive and continuous cyclic mechanical stress induces the production of IL-1 and MMP-9, resulting in cartilage degradation.  相似文献   

8.
Cartilage oligomeric matrix protein (COMP) is a pentameric glycoprotein present in cartilage, tendon and ligament. Fragments of the molecule are present in the diseased cartilage, synovial fluid and serum of patients with knee injuries, osteoarthritis and rheumatoid arthritis. Although COMP is a substrate for several matrix metalloproteinases (MMPs), the enzymes responsible for COMP degradation in vivo have yet to be identified. In this study we utilised well-established bovine cartilage culture models to examine IL-1alpha-stimulated COMP proteolysis in the presence and absence of MMP inhibitors. COMP was released from bovine nasal cartilage, in response to IL-1alpha, at an intermediate time between proteoglycans and type II collagen, when soluble MMP levels in the culture medium were undetectable. The major fragment of COMP released following IL-1alpha-stimulation migrated with an apparent molecular mass of approximately 110 kDa (Fragment-110) and co-migrated with both the major fragment present in human arthritic synovial fluid samples and the product of COMP cleavage by purified MMP-9. However, the broad-spectrum MMP and ADAM inhibitor BB94 only partially inhibited the formation of Fragment-110 and failed to inhibit COMP release significantly. Therefore the results of these studies indicate a role for proteinases other than MMPs in the degradation of COMP in bovine cartilage. It was further demonstrated that purified COMP was cleaved by ADAMTS-4, but not ADAMTS-1 or -5, to yield a fragment which co-migrated with Fragment-110. Therefore this is the first demonstration of COMP as a substrate for ADAMTS-4, although it remains to be determined whether this enzyme plays a role in COMP degradation in vivo.  相似文献   

9.
The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely degraded following incubation with MMP-1, collagen in cartilage with intact aggrecan was not. Using interleukin-1-stimulated bovine nasal cartilage explants where aggrecan depletion occurs during the first week of culture, followed by collagen loss during the second week, we evaluated the effect of selective MMP and aggrecanase inhibitors on degradation. A selective MMP inhibitor did not block aggrecan degradation but caused complete inhibition of collagen breakdown. Similar inhibition was seen with inhibitor addition following aggrecan depletion on day 6-8, suggesting that MMPs are not causing significant collagen degradation prior to the second week of culture. Inclusion of a selective aggrecanase inhibitor blocked aggrecan degradation, and, in addition, inhibited collagen degradation. When the inhibitor was introduced following aggrecan depletion, it had no effect on collagen breakdown, ruling out a direct effect through inhibition of collagenase. These data suggest that aggrecan plays a protective role in preventing degradation of collagen fibrils, and that an aggrecanase inhibitor may impart overall cartilage protection.  相似文献   

10.
Beta1-integrins were found in the cartilage matrix, suggesting their implication in the assembly of its architectural scaffold, but the mechanism for this event is not yet clear. Matrix metalloproteinases (MMPs) may be involved in an integrin-shedding mechanism and matrix beta1-integrins may act to alter MMP activity. To begin to address this question, this study was designed to determine whether beta1-integrins and MMPs are colocalized in the chondrocytes or in the extracellular matrix of cartilage. We investigated high-density cultures of limb buds of 12-day-old mouse embryos by double immunofluorescence, immunoelectron microscopy and by coimmunoprecipitation assays in order to examine the localization of beta1-integrins and matrix metalloproteinases (MMP-1, MMP-3 and MMP-9) in cartilage. It was found, that all investigated MMPs and beta1-integrins were specifically co-localized in high-density cartilage cultures. Immunogold and immunofluorescence labelling of both beta1-integrins and MMPs were observed not only at the surface of chondrocytes but mainly also in the pericellular space and distributed between collagen fibrils in the extracellular matrix (ECM) as well. Results of immunoprecipitation experiments suggest a functional association of MMPs and beta1-integrins in chondrocytes as already described for other cell types. Further investigations are needed to elucidate the functional association between beta1-integrins and MMPs in chondrocytes.  相似文献   

11.
Cartilage loss in osteoarthritis is characterized by matrix degradation and chondrocyte death. The lipid messenger ceramide is implicated in signal transduction of the catabolic cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1), as well as in apoptosis. The aim of this study was to examine the in vitro effects of ceramide on proteoglycan degradation, matrix-metalloproteinase (MMP) expression and activity, and chondrocyte apoptosis in rabbit articular cartilage. Cell-permeant ceramide C(2) stimulated proteoglycan degradation in cartilage explants starting from 3 x 10(-5) M, with 100% increase at the dose of 10(-4) M. This effect was probably due to MMPs since it was blocked by the MMP inhibitor batimastat. Furthermore, in isolated chondrocytes, C(2) stimulated the expression of MMP-1, 3, and 13 at the mRNA level, MMP activity, and MMP-3 production. Ceramide also caused chondrocyte apoptosis at doses ranging from 10(-5) to 10(-4) M. This study supports the hypothesis that ceramide might play a mediatory role in both matrix degradation and apoptosis in processes of cartilage loss such as those observed in osteoarthritis.  相似文献   

12.
Several lines of evidence speak for an important role of matrix metalloproteinases (MMPs) in the development of progressive joint destruction. To better understand the role of MMPs and their tissue inhibitors (TIMPs) in this process, we have used the antigen-induced arthritis model to study the temporospatial expression of several MMPs and TIMPs during the progression of arthritis. Arthritis was induced by a single intra-articular injection of methylated bovine serum albumin (mBSA) into one or both knee joints of adult mice previously immunised against mBSA. Samples were collected at 3, 7, 21 and 42 days after induction of arthritis for histology and RNA extraction, and analysed by Northern hybridisation, histochemistry and immunohistochemistry for production of several MMPs and TIMPs −1, −2 and −3. A systematic analysis of MMP and TIMP mRNA levels in mouse knee joints demonstrated a general upregulation of both MMPs and TIMPs during progression of arthritis. Upregulation of MMP-9, −13 and −14 coincided with the advancement of cartilage degeneration, but the expression patterns of MMP-9 and −13 also followed the course of synovial inflammation. TIMPs were steadily upregulated throughout the examination period. Immunohistochemical localisation of MMPs and TIMPs suggested the synovium to be the major source of MMP and TIMP production in arthritis, although articular cartilage chondrocytes also showed an increased production of both MMPs and TIMPs.  相似文献   

13.
Members of the matrix metalloproteinase (MMP) family are responsible for breakdown of extracellular matrix components involved in morphogenetic remodeling of animal embryogenesis. The highly sensitive assay of MMP using synthetic fluorescence-quenching substrate was employed to detect and to characterize a veiled MMP activity expressed in Japanese flounder embryos undergoing formation of lenses. The MMP activity was enhanced in proportion to increasing protein amounts of the embryonic lysate over 5 microg, and this reaction was proceeded in a time-dependent manner and with increasing substrate concentrations. Almost 2-fold increase in the embryonic MMP activity occurred by treatment with 4-aminophenylmercuric acetate, but the activity was markedly suppressed by metal chelating reagents. These enzymatic characteristics are apparently consistent with those of mammalian embryonic MMPs, particularly MMP-9. The characterized MMP activity was highly expressed at the specificstage during embryogenesis, indicating that this MMP may be involved in formation of lenses.  相似文献   

14.
Mechanisms involved in cartilage proteoglycan catabolism.   总被引:19,自引:0,他引:19  
The increased catabolism of the cartilage proteoglycan aggrecan is a principal pathological process which leads to the degeneration of articular cartilage in arthritic joint diseases. The consequent loss of sulphated glycosaminoglycans, which are intrinsic components of the aggrecan molecule, compromises both the functional and structural integrity of the cartilage matrix and ultimately renders the tissue incapable of resisting the compressive loads applied during joint articulation. Over time, this process leads to irreversible cartilage erosion. In situ degradation of aggrecan is a proteolytic process involving cleavage at specific peptide bonds located within the core protein. The most well characterised enzymatic activities contributing to this process are engendered by zinc-dependent metalloproteinases. In vitro aggrecanolysis by matrix metalloproteinases (MMPs) has been widely studied; however, it is now well recognised that the principal proteinases responsible for aggrecan degradation in situ in articular cartilage are the aggrecanases, two recently identified isoforms of which are members of the 'A Disintegrin And Metalloproteinase with Thrombospondin motifs' (ADAMTS) gene family. In this review we have described: (i) the development of monoclonal antibody technologies to identify catabolic neoepitopes on aggrecan degradation products; (ii) the use of such neoepitope antibodies in studies designed to characterise and identify the enzymes responsible for cartilage aggrecan metabolism; (iii) the biochemical properties of soluble cartilage aggrecanase(s) and their differential expression in situ; and (iv) model culture systems for studying cartilage aggrecan catabolism. These studies have clearly established that 'aggrecanase(s)' is primarily responsible for the catabolism and loss of aggrecan from articular cartilage in the early stages of arthritic joint diseases that precede overt collagen catabolism and disruption of the tissue integrity. At later stages, when collagen catabolism is occurring, there is evidence for MMP-mediated degradation of the small proportion of aggrecan remaining in the tissue, but this occurs independently of continued aggrecanase activity. Furthermore, the catabolism of link proteins by MMPs is also initiated when overt collagen degradation is evident.  相似文献   

15.
Interactions of cells with extracellular matrix (ECM) are mediated through specific cell surface receptors, belonging to the integrin family of transmembrane proteins. Integrins have been shown to be involved in chondrocyte-matrix interactions in the cartilage. In this study, the status of a matrix glycoprotein fibronectin (FN) and its receptor alpha5beta1 integrin in the articular cartilage in collagen type II-induced experimental arthritis in rats, as well as in synovial fluid from osteoarthritic patients was investigated. Experimental arthritis was induced by intradermal injection of type-II collagen (300 microg/100 g body wt) and Freund's complete adjuvant. Saline-treated animals served as control. Clinical severity was indicated by increase in paw volume. Significant increase in the activities of lysosomal enzymes beta-glucuronidase and beta-hexosaminidase was observed in synovial effusate, serum and cartilage of arthritic animals, when compared to untreated control, indicating dysfunction of cartilage. Changes in FN and alpha5beta1 integrin were studied by ELISA. A progressive increase was observed in the FN level in synovial effusate and cartilage of arthritic animals, when compared to untreated controls. FN levels were also significantly high in synovial fluid of osteoarthritic patients. A significant increase in the levels of alpha5beta1 integrin was found in cartilage of arthritic rats. Parallel changes in FN and alpha5beta1 integrin indicated that alterations in FN and alpha5beta1 integrin in chondrocytes constituted one of the molecular mechanisms during progression of arthritis.  相似文献   

16.
Metalloproteinases (MMPs) are a cluster of at least 23 enzymes belonging to the more wide family of endopeptidases called Metzincins, whose structure is characterized by the presence of a zinc ion at the catalytic site. Although the general view of MMPs as physiologic scissors involved in extracellular matrix (ECM) degradation and tissue remodeling is still valid, additional functions have recently emerged, including the ability to cleave non ECM molecules such as growth factors, cytokines and chemokines from their membrane-anchored proforms. These functions are utilized by tumor cells and are fundamental in the determination of tumor progression and invasion. The effect of MMPs activity in cancer progression has been traditionally associated with the acquisition by tumor cells of an invasive phenotype, an indispensable requisite for the metastatic spreading of cancer cells. In addition to the traditional view, a new role for MMPs in creating a favourable microenvironment has been proposed, so that MMPs are not only involved in cell invasion, but also in signaling pathways that control cell growth, inflammation, or angiogenesis. Finally, recent evidence suggest a role of MMPs in the so called "pre-metastatic niche" that is the hypothesis of an early distant modification of the premetastatic site by primary cancer cells. This new hypothesis is changing our traditional view about MMPs and provides important insights into the effective time window for the therapeutic use of MMP inhibitors. In this review we provide the main available data about the ability of MMPs in creating a suitable microenvironment for tumor growth in metastatic sites and we indicate the implication of these data on the potential use of MMP inhibitors in the metastatic therapy.  相似文献   

17.
Summary Mandibular condylar cartilage acts as both articular and growth plate cartilage during growth, and then becomes articular cartilage after growth is complete. Cartilaginous extracellular matrix is remodeled continuously via a combination of production, degradation by matrix metalloproteinases (MMPs), and inhibition of MMP activity by tissue inhibitors of metalloproteinases (TIMPs). This study attempted to clarify the age-related changes in the mRNA expression patterns of MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-3 in mandibular condylar cartilage in comparison to tibial growth plate and articular cartilage using an in situ hybridization method in growing and adult rats. MMP-2 and MMP-9 were expressed in a wide range of condylar cartilage cells during growth, and their expression domains became limited to mature chondrocytes in adults. The patterns of TIMP-1 and TIMP-2 expression were similar to those of MMP-2 and MMP-9 during growth, and were maintained until adulthood. TIMP-3 was localized to hypertrophic chondrocytes throughout the growth stage. Therefore, we concluded that TIMP-1 and TIMP-2 were general inhibitors of MMP-2 and MMP-9 in condylar cartilage, while TIMP-3 regulates the collagenolytic degradation of the hypertrophic cartilage matrix.  相似文献   

18.
The middle portion of Meckel’s cartilage (one of four portions that disappear with unique fate) degrades via hypertrophy and the cell death of chondrocytes and via the resorption of cartilage by chondroclasts. We have examined the immunolocalization of matrix metalloproteinase-2 (MMP-2), MMP-9, MMP-13, and MMP-14 (members of the MMP activation cascade) and galectin-3 (an endogenous substrate for MMP-9 and an anti-apoptotic factor) during resorption of Meckel’s cartilage in embryonic mice and have compared the results with those of developing endochondral bones in hind limbs. MMP immunoreactivity, except for MMP-2, is present in nearly all chondrocytes in the middle portion of Meckel’s cartilage. On embryonic day 15 (E15), faint MMP-2-immunoreactive and intense MMP-13-immunoreactive signals occur in the periosteal bone matrix deposited by periosteal osteoblasts on the lateral surface, whereas MMP-9 and MMP-14 are immunolocalized in the peripheral chondrocytes of Meckel’s cartilage. The activation cascade of MMPs by face-to-face cross-talk between cells may thus contribute to the initiation of Meckel’s cartilage degradation. On E16, immunopositive signaling for MMP-13 is detectable in the ruffled border of chondroclasts at the resorption front, whereas immunostaining for galectin-3 is present at all stages of chondrocyte differentiation, especially in hypertrophic chondrocytes adjacent to chondroclasts. Galectin-3-positive hypertrophic chondrocytes may therefore coordinate the resorption of calcified cartilage through cell-to-cell contact with chondroclasts. In metatarsal specimens from E16, MMPs are detected in osteoblasts, young osteocytes, and the bone matrix of the periosteal envelope, whereas galectin-3 immunoreactivity is intense in young periosteal osteocytes. In addition, intense MMP-9 and MMP-14 immunostaining has been preferentially found in pre-hypertrophic chondrocytes, although galectin-3 immunoreactivity markedly decreases in hypertrophic chondrocytes. These results indicate that the degradation of Meckel’s cartilage involves an activation cascade of MMPs that differs from that in endochondral bone formation.  相似文献   

19.
Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in degradation of extracellular matrix, a process that initiates uncontrolled spread of proliferating cancer cells and therefore plays a crucial role in cancer invasion and metastasis. Compounds able to modulate MMP activity may become important tools in cancer research. In the present study we examined the effect of two μ-selective opioids, morphine and endomorphin-2 (EM-2) on the production of MMP-2 and MMP-9 in MCF-7 cells. We report that both opioids time- and concentration-dependently inhibited the expression and secretion of these MMPs. The observed effect was not reversed by naloxone (Nal). Further experiments showed that morphine and EM-2 decreased endothelial nitric oxide synthase (eNOS) mRNA level and nitric oxide (NO) secretion in MCF-7 cells. These findings indicate that attenuation of MMP secretion by opioids was not mediated by opioid receptors but was under the control of nitric oxide system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号