共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyler R. Field Christopher D. Sibley Michael D. Parkins Harvey R. Rabin Michael G. Surette 《Anaerobe》2010,16(4):337-344
Airway disease resulting from chronic bacterial colonization and consequential inflammation is the leading cause of morbidity and mortality in patients with Cystic Fibrosis (CF). Although traditionally considered to be due to only a few pathogens, recent re-examination of CF airway microbiology has revealed that polymicrobial communities that include many obligate anaerobes colonize lower airways. The purpose of this study was to examine Prevotella species in CF airways by quantitative culture and phenotypic characterization. Expectorated sputum was transferred to an anaerobic environment immediately following collection and examined by quantitative microbiology using a variety of culture media. Isolates were identified as facultative or obligate anaerobes and the later group was identified by 16S rRNA sequencing. Prevotella spp. represented the majority of isolates. Twelve different species of Prevotella were recovered from 16 patients with three species representing 65% of isolates. Multiple Prevotella species were often isolated from the same sputum sample. These isolates were biochemically characterized using Rapid ID 32A kits (BioMérieux), and for their ability to produce autoinducer-2 and β-lactamases. Considerable phenotypic variability between isolates of the same species was observed. The quantity and composition of Prevotella species within a patients’ airway microbiome varied over time. Our results suggest that the diversity and dynamics of Prevotella in CF airways may contribute to airway disease. 相似文献
2.
Geiser M Bastian S 《American journal of physiology. Lung cellular and molecular physiology》2003,285(6):L1277-L1285
Lung disease is the major cause of death in individuals suffering from cystic fibrosis (CF), with abnormal lung-lining fluids occurring as early as early infancy. However, the precise etiology of CF lung disease is still poorly understood. We investigated the structural components of the airway surface-lining layer in targeted Cftrtm1HGU/Cftrtm1HGU mutant mice and non-CF controls. Five lungs per animal group were fixed by intravascular triple perfusion. The ultrastructure of the surface-lining layer of large and small intrapulmonary conducting airways was systematically investigated according to a standard protocol in transmission and scanning electron micrographs. In both animal groups, the surface-lining layer consisted of an aqueous phase and an osmiophilic film of variable thickness at the air-fluid interface. The aqueous phase usually did extend <1 microm beyond the uppermost tips of the epithelial cells in both animal groups. The aqueous phase of the small airways was slightly more electron dense in Cftrtm1HGU/Cftrtm1HGU than in non-CF mice. Neither the ultrastructure of the surfactant film at the air-fluid interface nor the forms assumed by the osmiophilic structures associated with surfactant turnover in the aqueous layer differed significantly in Cftrtm1HGU/Cftrtm1HGU and non-CF mice. Hence, there were no signs of any ultrastructural abnormalities in the surface-lining layer of young adult Cftrtm1HGU/Cftrtm1HGU mice before infection with CF-related pathogens. 相似文献
3.
Chronic infections in the respiratory tracts of cystic fibrosis (CF) patients are important to investigate, both from medical and from fundamental ecological points of view. Cystic fibrosis respiratory tracts can be described as natural environments harbouring persisting microbial communities with Pseudomonas aeruginosa as a dominant pathogen. Various factors contribute to the complexity of this ecosystem, including community composition, dynamics and interactions, as well as heterogeneous distribution and fluctuation of components of the immune system, antibiotics and nutrients. All these elements constitute the selective forces that drive the evolution of the microbes after they migrate from the outer environment to human airways. Pseudomonas aeruginosa adapts to the new environment through genetic changes and exhibits a special lifestyle in chronic CF airways. Understanding the persistent colonization of microbial pathogens in CF patients in the context of ecology and evolution will expand our knowledge of the pathogenesis of chronic infections and improve therapeutic strategies. 相似文献
4.
Tirouvanziam R Khazaal I Péault B 《American journal of physiology. Lung cellular and molecular physiology》2002,283(2):L445-L451
Most cystic fibrosis (CF) patients die of lung failure, due to the combined effects of bacterial infection, neutrophil-mediated inflammation, and airway obstruction by hyperviscous mucus. To this day, it remains unclear where and how this pathological vicious circle is initiated in vivo. In particular, it has proven difficult to investigate whether inflammatory pathways are dysregulated in CF airways independently of infection. Also, the relative involvement of large (tracheobronchial) vs. small (bronchiolar) airways in CF pathophysiology is still unclear. To help address these issues, we used an in vivo model based on the maturation of human fetal CF and non-CF small airways in severe combined immunodeficiency mice. We show that uninfected mature CF small airway grafts, but not matched non-CF controls, undergo time-dependent neutrophil-mediated inflammation, leading to progressive lung tissue destruction. This model of mature human small airways provides the first clear-cut evidence that, in CF, inflammation may arise at least partly from a primary defect in the regulation of neutrophil recruitment, independently of infection. 相似文献
5.
Protease activity in plasma is assayed using 4-methylumbelliferylguanidinobenzoate. The assay is modified by carrying out the reaction in the presence and absence of benzamidine, a competitive inhibitor of trypsin-like proteases. The parameters of the assay are described in detail. Using this assay, our earlier demonstration of a deficiency of protease activity in plasma of patients with cystic fibrosis is confirmed. The activity, corrected for the nonspecific hydrolysis of 4-methylumbelliferylguanidinobenzoate by benzamidine, is expressed as nanomoles of 4-methylumbelliferone released per milliliter plasma. Under standard conditions, the activity in plasma activated with chloroform-ellagic acid was 127.2 +/- 23.1 in 7 controls, 70.4 +/- 11.7 in 11 obligate heterozygotes, and 48.7 +/- 16.6 in 12 patients with cystic fibrosis. Identical results were obtained when unactivated plasma was used. These data demonstrate that the judicious use of specific inhibitors such as benzamidine might be useful in assaying low levels of protease activity in crude systems. 相似文献
6.
Jacquot J Tabary O Le Rouzic P Clement A 《The international journal of biochemistry & cell biology》2008,40(9):1703-1715
Cystic fibrosis (CF) is the most common lethal monogenic disorder in Caucasians, estimated to affect one out of 2500-4000 new-borns. In patients with CF, lack of CF transmembrane conductance regulator (CFTR) Cl(-) channel function leads to progressive pulmonary damage and ultimately to death. Severe and persistent polymorphonuclear neutrophil-dominated endobronchial inflammation and chronic bacterial infection are characteristic hallmarks of CF lung disease. Whether CFTR dysfunction results directly in an increased predisposition to infection and whether inflammation arises independent of infection remains to be established. The loss of functional CFTR in airway epithelial cells promotes depletion and increased oxidation of the airway surface liquid. Activated neutrophils present in airways produce large amounts of proteases and reactive oxygen species (ROS). Together these changes are associated with diminished mucociliary clearance of bacteria, activation of epithelial cell signalling through multiple pathways, and subsequent hyperinflammatory responses in CF airways. The NF-kappaB pathway and Ca(2+) mobilization in airway epithelial cells are believed to be of key importance for control of lung inflammation through regulated production of mediators such as interleukin-8 that participate in recruitment and activation of neutrophils, modulation of apoptosis, and control of epithelial barrier integrity. In this review, the current understanding of the molecular mechanisms by which airway epithelial cells contribute to abnormal lung inflammation in CF, as well as the anti-inflammatory strategies that can be proposed are discussed. 相似文献
7.
Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients 总被引:2,自引:0,他引:2
D'Argenio DA Wu M Hoffman LR Kulasekara HD Déziel E Smith EE Nguyen H Ernst RK Larson Freeman TJ Spencer DH Brittnacher M Hayden HS Selgrade S Klausen M Goodlett DR Burns JL Ramsey BW Miller SI 《Molecular microbiology》2007,64(2):512-533
8.
Vega-Carrascal I Reeves EP Niki T Arikawa T McNally P O'Neill SJ Hirashima M McElvaney NG 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(5):2897-2909
The T-cell Ig and mucin domain-containing molecules (TIMs) have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. It has been reported that proinflammatory cytokine dysregulation and neutrophil-dominated inflammation are the main causes of morbidity in cystic fibrosis (CF). However, the role of TIM receptors in CF has not been investigated. In this study, we demonstrated that TIM-3 is constitutively overexpressed in the human CF airway, suggesting a link between CF transmembrane conductance regulator (CFTR) function and TIM-3 expression. Blockade of CFTR function with the CFTR inhibitor-172 induced an upregulation of TIM-3 and its ligand galectin-9 in normal bronchial epithelial cells. We also established that TIM-3 serves as a functional receptor in bronchial epithelial cells, and physiologically relevant concentrations of galectin-9 induced TIM-3 phosphorylation, resulting in increased IL-8 production. In addition, we have demonstrated that both TIM-3 and galectin-9 undergo rapid proteolytic degradation in the CF lung, primarily because of neutrophil elastase and proteinase-3 activity. Our results suggest a novel intrinsic defect that may contribute to the neutrophil-dominated immune response in the CF airways. 相似文献
9.
Wessler I Bittinger F Kamin W Zepp F Meyer E Schad A Kirkpatrick CJ 《Life sciences》2007,80(24-25):2253-2258
The non-neuronal cholinergic system is widely expressed in human airways, skin and immune cells. Choline acetyltransferase (ChAT), acetylcholine and nicotine/muscarine receptors are demonstrated in epithelial surface cells, submucosal glands, airway smooth muscle fibres and immune cells. Moreover, acetylcholine is involved in the regulation of cell functions like proliferation, differentiation, migration, organization of the cytoskeleton, cell-cell contact, secretion and transport of ions and water. Cystic fibrosis (CF), the most frequent genetic disorder, is known to be caused by a mutation of the CF-gene coding for the cystic fibrosis transmembrane regulator protein (CFTR). CFTR represents a regulating transport protein for ion channels and processes involving endo- and exocytosis. Despite the identification of the genetic mutation knowledge of the underlying cellular pathways is limited. In the present experiments the cholinergic system was investigated in the peripheral blood and in the lung of CF patients undergoing lung transplantation (n=7). Acetylcholine content in bronchi and lung parenchyma of CF was reduced by 70% compared to controls (tumor-free tissue obtained from patients with lung tumor; n=13). In contrast, ChAT activity was elevated to some extent (p>0.05) in CF, and esterase activity did not differ from control. Acetylcholine content extracted from peripheral leucocytes (30 ml) was also reduced by 70% in CF (n=13) compared to healthy volunteers (n=9). Double labelling experiments with anti-CF antibodies and anti-ChAT antibodies showed a co-localization in peripheral lymphocytes, giving first evidence that CFTR may be linked with the intracellular storage/transport of non-neuronal acetylcholine. It is concluded that the non-neuronal cholinergic system is involved in the pathogenesis of CF. A reduced content of non-neuronal acetylcholine could contribute to the deleterious changes of epithelial ion and water movements in CF, because acetylcholine stimulates apical Cl(-) secretion, inhibits apical Na(+) and water absorption and therewith facilitates mucociliary clearance. 相似文献
10.
Mena A Smith EE Burns JL Speert DP Moskowitz SM Perez JL Oliver A 《Journal of bacteriology》2008,190(24):7910-7917
In previous work (E. E. Smith, D. G. Buckley, Z. Wu, C. Saenphimmachack, L. R. Hoffman, D. A. D'Argenio, S. I. Miller, B. W. Ramsey, D. P. Speert, S. M. Moskowitz, J. L. Burns, R. Kaul, and M. V. Olson, Proc. Natl. Acad. Sci. USA 103:8487-8492, 2006) it was shown that Pseudomonas aeruginosa undergoes intense genetic adaptation during chronic respiratory infection (CRI) in cystic fibrosis (CF) patients. We used the same collection of isolates to explore the role of hypermutation in this process, since one of the hallmarks of CRI is the high prevalence of DNA mismatch repair (MMR) system-deficient mutator strains. The presence of mutations in 34 genes (many of them positively linked to adaptation in CF patients) in the study collection of 90 P. aeruginosa isolates obtained longitudinally from 29 CF patients was not homogeneous; on the contrary, mutations were significantly concentrated in the mutator lineages, which represented 17% of the isolates (87% MMR deficient). While sequential nonmutator lineages acquired a median of only 0.25 mutation per year of infection, mutator lineages accumulated more than 3 mutations per year. On the whole-genome scale, data for the first fully sequenced late CF isolate, which was also shown to be an MMR-deficient mutator, also support these findings. Moreover, for the first time the predicted amplification of mutator populations due to hitchhiking with adaptive mutations in the course of natural human infections is clearly documented. Interestingly, increased accumulation of mutations in mutator lineages was not a consequence of overrepresentation of mutations in genes involved in antimicrobial resistance, the only adaptive trait linked so far to hypermutation in CF patients, demonstrating that hypermutation also plays a major role in P. aeruginosa genome evolution and adaptation during CRI. 相似文献
11.
12.
Perez A Issler AC Cotton CU Kelley TJ Verkman AS Davis PB 《American journal of physiology. Lung cellular and molecular physiology》2007,292(2):L383-L395
Primary airway epithelial cells grown in air-liquid interface differentiate into cultures that resemble native epithelium morphologically, express ion transport similar to those in vivo, and secrete cytokines in response to stimuli. Comparisons of cultures derived from normal and cystic fibrosis (CF) individuals are difficult to interpret due to genetic differences besides CFTR. The recently discovered CFTR inhibitor, CFTR(inh)-172, was used to create a CF model with its own control to test if loss of CFTR-Cl(-) conductance alone was sufficient to initiate the CF inflammatory response. Continuous inhibition of CFTR-Cl(-) conductance for 3-5 days resulted in significant increase in IL-8 secretion at basal (P = 0.006) and in response to 10(9) Pseudomonas (P = 0.0001), a fourfold decrease in Smad3 expression (P = 0.02), a threefold increase in RhoA expression, and increased NF-kappaB nuclear translocation upon TNF-alpha/IL-1beta stimulation (P < 0.000001). CFTR inhibition by CFTR(inh)-172 over this period does not increase epithelial sodium channel activity, so lack of Cl(-) conductance alone can mimic the inflammatory CF phenotype. CFTR(inh)-172 does not affect IL-8, IL-6, or granulocyte/macrophage colony-stimulating factor secretion in two CF phenotype immortalized cell lines: 9/HTEo(-) pCEP-R and 16HBE14o(-) AS, or IL-8 secretion in primary CF cells, and inhibitor withdrawal abolishes the increased response, so CFTR(inh)-172 effects on cytokines are not direct. Five-day treatment with CFTR(inh)-172 does not affect cells deleteriously as evidenced by lactate dehydrogenase, trypan blue, ciliary activity, electron micrograph histology, and inhibition reversibility. Our results support the hypothesis that lack of CFTR activity is responsible for the onset of the inflammatory cascade in the CF lung. 相似文献
13.
The physical, kinetic, and isoelectric focusing properties of native alpha 2-macroglobulin from cystic fibrosis and control plasmas were studied. No differences were found in the esterolytic activity levels of control, obligate heterozygote, and cystic fibrosis plasmas. Stability studies indicated that both control and cystic fibrosis alpha 2-macroglobulin retained full activity for at least 8 months at -20 degrees C, a week at 0-4 degrees C, 11 hr at 50 degrees C, and showed no differences in thermostability at several preincubation temperatures. The microheterogeneity of native alpha 2-macroglobulin was studied by column isoelectric focusing of five control and five cystic fibrosis plasmas. The number and pI values of the isoelectric forms between pH 4.5-8.0 were quite similar for both groups even though consistently less cystic fibrosis alpha 2-macroglobulin activity was recovered after isoelectric focusing. 相似文献
14.
Sadowska B Bonar A von Eiff C Proctor RA Chmiela M Rudnicka W Róźalska B 《FEMS immunology and medical microbiology》2002,32(3):191-197
The colonization of respiratory tract by Staphylococcus aureus is a frequent feature of cystic fibrosis (CF), especially in pediatric patients. The formation of small colony variants (SCVs), which produce reduced amounts of alpha-toxin, is one of the proposed ways of staphylococcal accommodation in an intracellular niche. The aim of the present study was to compare some properties of S. aureus SCVs and their parent strains. A site-directed S. aureus hemB mutant and parent strain 8325-4 were included in the study (control pair). Normal and SCV strain pairs from CF patients as well as control strains were tested for the susceptibility to defensins, killing activity of professional phagocytes and adhesion to A549 cell line. Because S. aureus are exposed to many cationic proteins in the host, we challenged a clinical isolate with minimal subinhibitory concentration (subMIC) of protamine and found that hemin and menadione auxotrophic SCVs emerged. SCVs were more resistant than normal strains to protamine but not to dermaseptin. The susceptibility to the bactericidal activity of magainin was the same for normal and SCV strains. The protamine resistance of normal as well as SCVs was strongly enhanced by high salt concentration. The adhesion of some SCVs to A549 cells was higher than adhesion of parental strains. However, the number of adherent bacteria (SCVs) was diminished in the presence of hemin for hemin auxotrophs. The uptake of SCVs by granulocytes was lower than ingestion of normal strains, but SCVs were killed with equal or greater potency. SCVs are adapted to intracellular survival and persistence in the host under certain circumstances. The ability to form a variant subpopulation affords S. aureus additional survival options. 相似文献
15.
Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis airways 总被引:11,自引:0,他引:11
Donaldson SH Lazarowski ER Picher M Knowles MR Stutts MJ Boucher RC 《Molecular medicine (Cambridge, Mass.)》2000,6(11):969-982
BACKGROUND: Cystic fibrosis (CF) is a syndrome caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene. Despite advances in our understanding of the molecular pathogenesis of CF, the link between CFTR gene mutations and the pathogenesis of CF lung disease remains poorly defined. CFTR has been assigned a number of putative functions that may contribute to innate airway defense, including the regulation of adenosine 5'-triphosphate (ATP) release into the extracellular environment. Because extracellular ATP and uridine 5'-triphosphate (UTP) may regulate airway mucociliary clearance via interaction with luminal P2Y2 receptors, the loss of CFTR-mediated nucleotide release could explain the defect in CF airway defense. MATERIALS AND METHODS: We tested the physiologic importance of CFTR-mediated nucleotide release in vivo by directly measuring levels of ATP and UTP in nasal airway surface liquid from normal and CF subjects. Because these basal nucleotide levels reflect the net activities of nucleotide release and metabolic pathways, we also measured constitutive rates of nucleotide release and metabolism on well-differentiated normal and CF airway cultures in vitro. The measurement of ATP release rates were paralleled by in vivo studies employing continuous nasal perfusion in normal and CF subjects. Finally, the regulation of ATP release by isoproterenol and methacholine-stimulated submucosal gland secretion was tested. RESULTS: These studies revealed that steady-state ATP and UTP levels were similar in normal (470 +/- 131 nM and 37 +/- 7 nM, respectively) and CF (911 +/- 199 nM and 33 +/- 12 nM, respectively) subjects. The rates of both ATP release and metabolism were also similar in normal and CF airway epithelia both in vitro and in vivo. Airway submucosal glands did not secrete nucleotides, but rather, secreted a soluble nucleotidase in response to cholinergic stimuli. CONCLUSION: The concentration of ATP in airway surface liquid is in a range that is relevant for the activation of airway nucleotide receptors. However, despite this finding that suggests endogenous nucleotides may be important for the regulation of mucociliary clearance, our data do not support a role for CFTR in regulating extracellular nucleotide concentrations on airway surfaces. 相似文献
16.
B. Strandvik E. Svensson H. W. Seyberth 《Prostaglandins, leukotrienes, and essential fatty acids》1996,55(6):419-425
The urinary excretion rate (ng/h/1.73 m2) of prostanoids was determined with a capillary gas-liquid chromatographic mass spectrometric method in 19 patients with cystic fibrosis (CF) aged 1–29 years. Patients with CF showed an increased excretion of prostaglandin E2 metabolites (PGE-M) and thromboxane B2 and its metabolites at all ages. An imbalance in the excretion pattern of thromboxane B2 metabolites also suggested a relative impairment of β-oxidation. There was no increased excretion of dinor-6-keto-PGF1α, indicating normal prostacyclin biosynthesis. No correlation was found to genotype, clinical score, lung function or bacterial colonization but a significant negative relation was found between the main prostanoids in the urine and serum phospholipid levels of essential fatty acids. The results show that, contrary to the generally accepted decrease of prostanoid excretion in essential fatty acid deficiency, patients with CF increase their production parallel to the development of the deficiency. Since prostanoid synthesis is rate limited by arachidonic acid release, our data support a previously presented hypothesis about a pathological regulation of the release of arachidonic acid in CF. 相似文献
17.
Yuan Fang Miao-miao Lou Bin Li Guan-Lin Xie Fang Wang Li-Xin Zhang Yuan-Chan Luo 《World journal of microbiology & biotechnology》2010,26(3):443-450
A survey of Burkholderia cepacia complex (Bcc) species was conducted in sputum from cystic fibrosis (CF) patients in China. One hundred and four bacterial isolates were recovered on B. cepacia selective agar and 42 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates from CF sputum was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the 42 Bcc isolates belong to B. cepacia, B. cenocepacia and B. contaminans while predominant Bcc species was B. cenocepacia. This is the first report of B. contaminans from CF sputum in China. In addition, results from this study showed that chitosan solution at 10, 25, 50 and 100 μg/ml markedly inhibited the growth of the 16 representative isolates from the three different Bcc species, which indicated that chitosan was a potential bactericide against Bcc bacteria. 相似文献
18.
Minarowski Ł Sands D Minarowska A Karwowska A Sulewska A Gacko M Chyczewska E 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》2008,46(2):245-246
Thiocyanates (SCN-) are ubiquitous in nature. There are indispensable part of host defense system that act as a substrate for lactoperoxidase (LPO). In our study we present initial data on SCN- concentration in saliva of CF patients in comparison to healthy non-smokers and healthy smokers. 5 ml of saliva was collected from each subject to a sterile tube and thiocyanate concentration was measured in each sample. The results of the measurements are presented on Fig. 1. Mean concentration of SCN- in saliva of CF patients was 0.031 +/- 0.0052 g/l, in healthy non-smokers 0.039 +/- 0.0048 g/l and in healthy smokers 0.048 +/- 0.0161 g/l. The differences between each group were statistically significant. Studies on larger group of patients and probably on different material (BALF or induced sputum) should present interesting data complementing the in vitro studies. 相似文献
19.