首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate (10-100 microM) reversibly depolarizes guinea-pig cerebral cortical synaptosomes. This does not appear to be because of a conventional autoreceptor. Neither kainate at 1 mM, 100 microM N-methyl-D-aspartate (NMDA), 100 microM L-2-amino-4-phosphonobutanoate (APB), nor 100 microM quisqualate affects the Ca2+-dependent release of glutamate from suboptimally depolarized synaptosomes. However, kainate, quisqualate, and the quisqualate agonists beta-N-oxalylamino-L-alanine and alpha-amino-3-hydroxy-5-methylisoxazole propionate cause a slow Ca2+-independent release of glutamate from polarized synaptosomes. However, unlike kainate, quisqualate does not inhibit the acidic amino acid carrier. APB, NMDA, and the NMDA receptor-mediated neurotoxin beta-N-methylamino-L-alanine do not influence Ca2+-independent release at 100 microM. The depolarization of the plasma membrane by glutamate can be mimicked by D-aspartate, can be blocked by the transport inhibitor dihydrokainate, and is accompanied by the net uptake of acidic amino acids. L-Glutamate or D-aspartate at 100 microM increases the cytoplasmic free Ca2+ concentration. D-aspartate at 100 microM causes a Ca2+-dependent release of endogenous glutamate, superimposed on the Ca2+-independent heteroexchange with glutamate through the acidic amino acid carrier. The results suggest that the glutamatergic subpopulation of synaptosomes can be depolarized by exogenous glutamate.  相似文献   

2.
Intraterminal free Ca2+ concentration modulates the subsequent release of neurotransmitters. Depolarization of synaptosomes with 29 mM K+ augments cytosolic free Ca2+ concentration, which is triphasic, the peak times being at 10, 60, and 180 s. We examined the characteristics of each elevation of cytosolic free Ca2+ concentration in rat brain synaptosomes which had been preincubated for 3 min with a Ca2+-channel blocker, such as La3+, diltiazem, nifedipine, or verapamil, and under conditions of hypoxia or acidosis. The concentration of free Ca2+ in the quin-2-loaded rat brain synaptosomes was detected fluorometrically. All these elevations were suppressed in the presence of 200 microM EGTA or 100 microM La3+. At the first phase, the elevation of cytosolic free Ca2+ concentration with high K+ stimuli was significantly inhibited by La3+ (20 microM) or by acidosis (pH 6.7). On the other hand, diltiazem, which is a more potent blocker of the release of Ca2+ from the mitochondria, inhibited the increasing cytosolic free Ca2+ concentration at the third phase in a concentration-dependent manner. Hypoxia also showed inhibition at the third phase. These results suggest that the augmentation of high K+-evoked cytosolic free Ca2+ concentration may be due to the influx of extracellular Ca2+. The increase in cytosolic free Ca2+ concentration at the third phase is no doubt linked to the mitochondrial function.  相似文献   

3.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

4.
In synaptosomes prepared from rat cerebral cortex, free cytosolic calcium concentration ([Ca2+]i) was measured using the fluorescent dye fura-2. Incubation of fura-2-loaded synaptosomes with carbachol increased [Ca2+]i in a dose-dependent manner (1-1,000 microM), with a maximum response of 22 +/- 2% at approximately 100 microM and an EC50 (calculated concentration producing 50% of the maximum response) of 30 microM. The effect of carbachol (100 microM) on [Ca2+]i was antagonised by atropine, but not by hexamethonium (10 microM). The calculated concentration of atropine needed for 50% inhibition (IC50) was 260 nM. The rise in [Ca2+]i produced by carbachol was reduced in the absence of extrasynaptosomal Ca2+ and effectively blocked by the L-type calcium channel blocker nifedipine (with an IC50 of 29 nM). The response to carbachol was reduced if the synaptosomes were preincubated with the protein kinase inhibitors H7 [1-(5-isoquinolinylsulfonyl)-2- methylpiperazine] (from 17% in the solvent control to 4%) and staurosporine (from 20% in the solvent control to 3%). These results show that stimulation of muscarinic acetylcholine receptors in synaptosomes increases [Ca2+]i by protein kinase-dependent activation of 1,4-dihydropyridine-sensitive calcium channels.  相似文献   

5.
The role of Ca2+ on 32Pi incorporation into polyphosphoinositides (PPI) of rat cortical synaptosomes was studied. Stimulation of muscarinic receptor by carbachol (1 mM) resulted in a decrease in 32Pi incorporation into phosphatidylinositol-4,5-bisphophaphate (TPI) and phosphatidylinositol-4-phosphate (DPI), and an increase in 32Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA), whereas no significant effect on other membrane phospholipids was found. This response could be blocked by atropine (1 microM). The stimulatory effect of carbachol required Ca2+ in the medium; the presence of 0.5 mM EGTA blocked the effect of carbachol on PPI turnover completely. Calcium ionophore A23187, at 1 microM, had a similar effect on PPI turnover by carbachol (1 mM). At higher concentrations (10-100 microM) of A23187, the PPI turnover rate was much enhanced. Depolarization of the membrane by high potassium (60 mM) in the presence of calcium resulted in an enhanced PPI turnover, which was similar to the results of the carbachol (1 mM) effect but to a lesser extent. Calcium antagonists, diltiazem and trifluoperazine, at 10 microM could block the carbachol effect on 32Pi incorporation into PPI in this preparation. Our results suggest that the enhancement of PPI turnover in rat cortical synaptosomes by carbachol, calcium ionophore or high potassium requires Ca2+, and it can be blocked by compounds which interfere with the availability of this ion, such as EGTA or calcium antagonists.  相似文献   

6.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Kyotorphin (Tyr-Arg) at 1 to 100 microM increased the intracellular [Ca2+]i, determined with Quin-II in the slice and the entry of 45Ca2+ entry into synaptosomes of the lower brain stem of the rat. These effects were not antagonized by nifedipine nor verapamil. However, since this dipeptide caused no changes on the membrane potentials of the synaptosomes, measured with Rhodamine 6G, it is suggested that the kyotorphin-induced increase in the [Ca2+]i may be due not to effects on the voltage dependent Ca2+ channels and Na+-Ca2+ exchange mechanisms caused by the changes of the membrane potentials, but to the specific receptor (kyotorphin receptor)-mediated mechanisms.  相似文献   

8.
The applicability of the potential-sensitive dye diS-C3-(5) for the study of A23187 + Ca2+ induced plasma membrane hyperpolarization was tested in rat brain synaptosomes. An appropriate dye synaptosome ratio was chosen for the fluorescence titration dye in Ca-free Krebs-Ringer solution. The fluorescence intensity of the probe was increased upon the addition of Ca2+ (1 microM) to the synaptosomes in the presence of A23187 (1 microM). The effect of Ca2+ + A23187 persisted in a Na+-free medium or when Na+ channels were inhibited by tetrodotoxin as well as in high K+-depolarized synaptosomes (75 microM KCl). In the presence of oligomycin or a protonophore (1 microM) the effect of Ca2+ + A23187 was suppressed. This suggests that the A23187-induced fluorescence increase is due to a depolarization of intrasynaptosomal mitochondria. Therefore, the use of the dye diS-C3-(5) for the study of Ca-induced hyperpolarization does not seem to be feasible unless a quantitative model of changes in fluorescence related to the plasma and mitochondrial membrane potentials is elaborated.  相似文献   

9.
Verapamil at 200 microM, prevented the respiratory stimulation, K+ loss, transmitter release, and 45Ca2+ entry into incubated synaptosomes evoked by veratrine (25 to 75 microM) or by high K+ (56 mM). Verapamil (100 microM) also blocked gamma-aminobutyric acid homoexchange, whilst tetrodotoxin was ineffective. Much lower concentrations of verapamil (less than 1 microM) blocked the 45Ca2+ entry caused by veratrine, but not its action in releasing neurotransmitter or K+. It is concluded that verapamil, at 30 to 200 microM, blocks active Na+ channels, thereby preventing depolarization. At greater than 1 microM, verapamil blocks Ca+ channels selectively.  相似文献   

10.
The relationship between intrasynaptosomal total (CaT) and free ([Ca2+]i) calcium and 45Ca accumulation was studied under physiological and K(+)-depolarised conditions in rat cortical synaptosomes. Under physiological conditions, CaT (10.7 mM) was approximately 10,000 times higher than [Ca2+]i (118 nM), showing that there is a large reservoir of sequestered calcium in synaptosomes. 45Ca accumulation was rapid (initial rate, 3.4 nmol/mg protein/min), substantial (7 nmol/mg protein in 2 min), and depolarisation dependent, and reached equilibrium after 5 min. At equilibrium, only 10% of CaT was freely exchangeable. This pool was much larger than the free Ca2+ pool. CaT, [Ca2+]i, and 45Ca accumulations were directly related to the Ca2+ concentration in the buffer, suggesting that [Ca2+]i is not highly conserved but is maintained by simple equilibria between the various pools. Clonidine reduced 45Ca accumulation in a time- and dose-dependent manner. Maximum inhibition (40% at 100 microM) occurred at 2 min and the IC50 was 80 nM. The reduction caused by clonidine (1 microM) reached equilibrium after 5 min, but this equilibrium value was lower than in controls, suggesting that clonidine changes the exchangeable Ca2+ pool size. The effects of clonidine (1 microM) on [Ca2+]i (26% reduction) and on 45Ca accumulation (24% reduction) were most apparent under physiological conditions. However, while it was not dependent on depolarisation, it did not occur in physiological buffer containing low K+ concentration (0.1-1 mM). The inhibitory effect of clonidine on 45Ca accumulation is receptor mediated as it was antagonised by idazoxan (1 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
R M Gaion  G Krishna 《Life sciences》1982,31(6):551-556
Rat fat cell plasma membrane preparations were used to study the effect of Mn2+, Mg2+, Ca2+ on guanylate cyclase activity. Among these three cations, Mn2+ was the most effective in activating the enzyme; Mg2+ and Ca2+ were 23% and 10% respectively as effective as Mn2+ in activating the enzyme. Low concentrations of Ca2+ (1 microM) increased the rate of cGMP formation at MgGTP concentrations ranging from 0.3 to 2 mM. This effect was less at higher concentrations of Ca2+ and was independent of the presence of excess Mg2+. Ca2+ (100 microM) had only a marginal stimulatory effect on the MnGTP-dependent enzyme.  相似文献   

12.
The present study was undertaken to examine calmodulin-dependent effect of thyroid hormones (THs) on synaptosomal protein phosphorylation in mature rat brain. Effect of L-triiodothyronine (L-T3) on in vitro protein phosphorylation was measured in a hypotonic lysate of synaptosomes prepared from adult male rat cerebral cortex, incubated in presence and absence of calcium ion (Ca2+) and calmodulin. L-T3 significantly enhanced incorporation of 32P into synaptosomal proteins as compared to basal level of phosphorylation in the presence of Ca2+ and calmodulin. Under these conditions, increase in protein phosphorylation was 47, 74 and 52% for 10 nM, 100 nM and 1 microM L-T3, respectively. Chelation of Ca2+ using ethylene glycol-bis (2-aminoethylether)-N, N, N', N'-tetraacetic acid (EGTA) inhibited the effects of Ca2+/calmodulin on TH-stimulated protein phosphorylation levels. This study suggests that a high proportion of L-T3-stimulated protein phosphorylation involves Ca2+/calmodulin-dependent pathways in adult rat cerebrocortical synaptosomes.  相似文献   

13.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

14.
KCl (16 mM) stimulated the release of [3H]noradrenaline ([3H]NA) from rat hypothalamic synaptosomes in a Ca2+-dependent manner; this release was attenuated by clonidine (0.01-100 microM). Changes in the release of [3H]NA and the functional status of alpha 2-adrenoceptors in the medial hypothalamus of rats treated acutely and chronically with clorgyline (1 mg/kg/day) or desipramine (DMI, 10 mg/kg/day) were assessed using superfused synaptosomes in which the attenuating effects of clonidine (1 microM) or the potentiating effects of yohimbine (1 microM) on K+-evoked release of [3H]NA were measured. After acute administration of DMI, significantly less [3H]NA was accumulated into synaptosomes. Although total (spontaneous + K+-evoked) [3H]NA release from these synaptosomes was unchanged, a significant reduction was apparent in the K+-evoked release from the DMI-treated tissue. Attenuation of K+-evoked release by clonidine was abolished in both these acute treatment groups. Following the chronic antidepressant drug regimens, [3H]NA uptake into DMI-treated tissue remained significantly reduced although total percent and K+-evoked [3H]NA release were unchanged. The K+-evoked release of [3H]NA in S1 was significantly enhanced (by 22%) in the clorgyline treatment group. Attenuation of K+-evoked [3H]NA release by clonidine in both chronic antidepressant-treated tissues was not significantly changed. It is concluded that the functional sensitivity of alpha 2-adrenoceptors on nerve endings in the medial hypothalamus is unchanged by these chronic antidepressant drug regimens. In synaptosomes from untreated tissue, yohimbine significantly potentiated K+-evoked release of [3H]NA; this effect was unchanged after acute regimens and reduced after chronic administration of both the antidepressants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The present study investigated the involvement of endothelial nitric oxide in relaxation induced by purified green tea (-)epicatechin in rat isolated mesenteric arteries. (-)Epicatechin caused both endothelium-dependent and -independent relaxation. NG-Nitro-L-arginine methyl ester (L-NAME, 100 microM) and methylene blue (10 microM) significantly attenuated (-)epicatechin-induced relaxation in endothelium-intact tissues. L-Arginine (1 mM) partially antagonized the effect of L-NAME. (-)Epicatechin-induced relaxation was inhibited by Rp-guanosine 3',5'-cyclic monophosphothioate triethylamine. In contrast, indomethacin and glibenclamide had no effect. (-)Epicatechin (100 microM) significantly increased the tissue content of cyclic GMP and NG-nitro-L-arginine (100 microM) or removal of the endothelium abolished this increase. (-)Epicatechin (100 microM) induced an increase in intracellular Ca2+ levels in cultured human umbilical vein endothelial cells. Iberiotoxin at 100 nM attenuated (-)epicatechin-induced relaxation in endothelium-intact arteries and this effect was absent in the presence of 100 microM L-NAME. In summary, (-)epicatechin-induced endothelium-dependent relaxation is primarily mediated by nitric oxide and partially through nitric oxide-dependent activation of iberiotoxin-sensitive K+ channels. In addition, there may be a causal link between increased Ca2+ levels and nitric oxide release in response to (-)epicatechin.  相似文献   

16.
The inhibition of K+-depolarization dependent Ca influx by omega-conotoxin GVIA was compared in the frog, chick, and rat brain synaptosomes. The toxin at concentrations greater than or equal to 0.3 microM completely inhibited Ca entry in the frog and chick preparations, but was only partly effective in blocking Ca influx in the rat brain synaptosomes. In chick synaptosomes the toxin's effect was biphasic: a small component (approximately equal to 15%) of total Ca influx was inhibited by the toxin with high affinity (I50 less than 0.002 microM); a major component (approximately equal to 80%) of Ca influx was inhibited with a moderate affinity (I50 approximately equal to 0.05 microM). In rat brain synaptosomes 40% of Ca influx was inhibited by the toxin with low affinity (I50 approximately equal to 0.3 microM), and 60% of Ca influx was unaffected by the toxin concentration of up to 10 microM. These data suggest a heterogeneity of voltage-sensitive Ca channels in vertebrate brain synaptosomes.  相似文献   

17.
Chemiluminescent detection was applied to measure the continuous spontaneous Ca2+-independent liberation of acetylcholine (ACh) from Torpedo electric organ synaptosomes. Differentiation between the release of ACh and choline was achieved by inhibiting cholinesterases with phospholine, and a way to quantify the continuous release was devised. The method permitted measurements during short time intervals from minute amounts of tissue and without an accumulation of ACh in the medium. Synaptosomes continuously liberated small amounts of ACh during incubations in the presence of 3 mM K+ and in the absence of Ca2+. The spontaneous liberation of ACh was similar both quantitatively and qualitatively at pH values of 8.6 and 7.8. It was unaltered by MgCl2 (10.4 mM), 2-(4-phenylpiperidino)cyclohexanol (10 microM), ouabain (104 microM), atropine (10 microM), and valinomycin (102 nM). Carbamoylcholine brought about a decrease, which could be partially reversed by atropine. The Ca2+-independent output of ACh was increased considerably when the concentration of K+ ions was raised (eightfold at 103 and 35-fold at 203 mM K+). Carbamoylcholine (104 microM) blocked the increase in ACh release produced by high K+; this effect of carbamoylcholine was not reversed by atropine (10 microM). When Ca2+ was added to synaptosomes depolarized by a high concentration of K+, the amount of ACh released during the first 1-3 min after the addition of Ca2+ was at least 20 times higher than in the absence of Ca2+, but the release returned rapidly to predepolarization values. Similarly high values of ACh release could be achieved by adding Ca2+ plus the ionophore A23187 and even higher values by adding Ca2+ plus gramicidin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Diltiazem was able to decrease the oxygen consumption rate and lactate production in synaptosomes isolated from rat forebrains, both under control and depolarized (40 microM veratridine) conditions, starting from a concentration of 250 microM. This effect was particularly evident when synaptosomes were depolarized by veratridine. This depolarization-counteracting action was evident also when transplasma membrane K+ diffusion potentials were measured after depolarization induced by veratridine and by rotenone with a glucose shortage. The concentrations of ATP, phosphocreatine, and creatine were less sensitive to diltiazem action. The concentration/response relationships were the same as those found for the oxygen consumption were the same as those found for the oxygen consumption rate, lactate production, and K+ diffusion potentials. The effects of 0.5 mM diltiazem in counteracting inhibition of energy metabolism induced by rotenone without glucose were no longer detectable when either Ca2+ or Na+ was absent from the incubation medium of synaptosomes. Diltiazem at the same concentrations (starting from 250 microM) was able to inhibit both the veratridine-induced and the rotenone-without-glucose-induced increase in intrasynaptosomal free Ca2+ levels evaluated with the fluorescent probe quin2. The results are discussed in view of a possible effect of diltiazem on voltage-dependent Na+ channels and the possibility of utilizing this approach for counteracting neuronal failure due to derangement of energy metabolism or hyperexcitation.  相似文献   

19.
We have studied the ability of fertilized eggs of Ilyanassa obsoleta to undergo polar lobe formation and cytokinesis in the presence of Ca2+ antagonists (Ca2+ channel blockers, Ca2+ uptake inhibitors). Earlier work had suggested little need for exogenous Ca2+ during these cellular shape changes. Again it appears that exogenous Ca2+ probably is not required, based on cell ability to undergo the shape changes with no, or only minor, delay in the presence of 50 mM La3+ at pH 6.5, 10 mM concentrations of Ni2+ or Co2+, 1 mM Cd2+, and 100 microM concentrations of Mn2+, papaverine, verapamil, D600, or diltiazem. In nominally Ca2+-free seawater (containing approximately 10 microM Ca2+) (CFSW), there still is no effect of Cd2+ (up to 100 microM), Ni2+, Co2+, Mn2+, or diltiazem; however, papaverine, verapamil, and D600 in CFSW cause longer delays in the shape changes than they do in the presence of normal levels of Ca2+ (SW). In 10-50 microM nifedipine, shape changes are progressively delayed to the same extent in both SW and CFSW, but more so in CFSW at concentrations above 50 microM nifedipine. Among calmodulin antagonists, trifluoperazine up to 100 microM was without effect, but chlorpromazine at 25-100 microM and calmidazolium at 50-100 microM caused substantial, concentration-dependent delays in the starting times for the shape changes. Methylxanthines caused a substantial speed-up in the starting times for both polar lobe formation and cytokinesis. The most effective of these, caffeine, at optimal concentrations of 0.7-10 mM in SW or CFSW caused shape changes to occur 12-15 min earlier than in controls undergoing a normal 50-min cycle. Caffeine is known to cause release of Ca2+ from muscle sarcoplasmic reticulum. A putative antagonist of intracellular Ca2+ mobilization, TMB-8, significantly inhibited the shape changes of the Ilyanassa cells, whereas a variety of inhibitors of exogenous Ca2+ uptake noted above did not inhibit. We conclude that Ca2+ may be necessary for polar lobe formation and cytokinesis in Ilyanassa cells, but that it may be released from intracellular, sequestered stores rather than derived from exogenous sources.  相似文献   

20.
The characteristics of the release of endogenous dopamine and noradrenaline from rat brain synaptosomes were studied using HPLC with an electrochemical detector. The spontaneous release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. Also, the high-K+ (30 mM)-evoked release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. From these results, the ratio of the Ca2(+)-dependent component to the total release of noradrenaline seemed to be similar to that of dopamine. On the other hand, 20 microM La3+ or 1 microM diltiazem inhibited both the spontaneous and 30 mM K(+)-evoked release of dopamine by approximately 50-60% but inhibited neither the spontaneous nor the 30 mM K(+)-evoked release of noradrenaline. The K(+)-evoked rise in intrasynaptosomal Ca2+ concentration was mostly blocked in Ca2(+)-free medium or 100 microM La3(+)-containing medium but was only partially blocked by 20 microM La3+ or 1 microM diltiazem. These data indicate alternative possibilities in that the Ca2(+)-dependent release of noradrenaline might be less sensitive to a change of intracellular Ca2+ concentration than that of dopamine and that the calcium channels directly involved in the noradrenaline release may be more resistant to diltiazem and La3+ than those involved in the dopamine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号