首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasoactive intestinal peptide (VIP) activates adenylylcyclase in sympathoadrenal cells at concentrations greater than 10(-6) M. We demonstrate here that two forms of a newly discovered peptide with homology to VIP named pituitary adenylate cyclase-activating polypeptide (PACAP) are much more potent activators of signal transduction in PC12 cells. Both the 27- and 38-amino acid forms of PACAP elevate cAMP levels in PC12 cells and stimulate adenylylcyclase in PC12 membranes, with an EC50 near 10(-9) M. PACAP38 additionally is a potent activator of the inositol lipid cascade in PC12 cells, elevating the content of inositol phosphates by 8-fold at 10(-8) M (EC50 = 7 x 10(-9) M). PACAP38 and PACAP27 have been thought to have essentially identical actions, but PACAP27 is 2-3 logs less potent in increasing inositol lipid levels. Moreover, PACAP38 at 10(-8) M is an effective inducer of neuronal morphology in PC12 cells, whereas PACAP27 is much less active in promoting neurite outgrowth. In contrast to the PACAP-preferring receptors on PC12 cells, another class of PACAP-binding sites with equal high affinities for VIP, PACAP38, and PACAP27 has been identified on several other cell types. We find that the cAMP content of rat CH3 pituitary cells, known to have high affinity VIP receptors, is in fact potently elevated by PACAP27 and PACAP38 as well as by VIP. However, PACAP38, even at 10(-6) M, is not capable of significant activation of inositol lipid turnover via these VIP/PACAP nondiscriminating sites.  相似文献   

2.
Molecular identification of the binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) and the effect of vasoactive intestinal peptide (VIP) on the specific binding sites for PACAP in rat cultured astrocyte membrane preparations were investigated. Affinity cross-linking of astrocyte membrane preparations with [125I]PACAP27 showed the presence of a 60 kDa radiolabeled ligand-receptor complex. The labeling of this band was completely abolished in the presence of 10(-8) M or higher concentrations of unlabeled PACAP27. The molecular weight of this binding protein was estimated to be 57 kDa assuming an equimolar interaction of ligand and receptor in the 60 kDa complex. The labeling of [125I]PACAP27 binding to this binding protein was partly reduced by the addition of 10(-6) M VIP, but not by 10(-8) M. In the binding assay, VIP displaced the specific binding of [125I]PACAP27 at 10(-7) M or a greater concentration. Displacement of [125I]PACAP27 binding by unlabeled PACAP27 was analyzed in the presence or absence of 10(-6) M VIP. VIP at 10(-6) M reduced the maximal binding capacity (Bmax) of the high affinity binding site for PACAP27 by about 50% but did not alter the Bmax of the low affinity binding site. The dissociation constants (Kd) for both the high and low affinity binding sites were unaltered. These results indicate that PACAP binds to a 57 kDa membrane protein with high affinity and that VIP, at much higher concentrations, binds to this same binding site, suggesting that VIP mimics the biological action of PACAP in astrocytes at high concentrations.  相似文献   

3.
To probe the importance of a proposed β-turn within residues S9-R12 of PACAP for recognition by VIP/PACAP receptors, compounds 1 and 2, two conformationally restricted analogues of PACAP27 incorporating respectively (S)- or (R)-IBTM as type II or II′ β-turn dipeptide mimetic at the Y10-S11 position, were synthesized. According to 1H NMR conformational analyses in aqueous solution and 30% TFE, both PACAP27 and the [S-IBTM10,11]PACAP27 analogue 1 adopt similar ordered structures. PACAP27 shows an N-terminal disordered region (residues H1-F6) and an -helical conformation within segment T7–L27. For residues S9–R12, our data seem more compatible with a segment of the -helix than with the β-turn previously proposed for this fragment. In compound 1 the -helix, also spanning T7–L27 residues, appears slightly distorted at the N-terminus relative to the native peptide. Although this distortion could lead to the marked decrease in binding affinity of this compound at the VIP/PACAP receptors, the lack of the Y10 side chain in analogues 1 and 2 could also significantly affect the binding of these compounds.  相似文献   

4.
We have recently shown that corticotropin-releasing hormone (CRH) is a major thyrotropin (TSH)-releasing factor in amphibians, but we have also found that, besides CRH, other hypothalamic substances stimulate TSH secretion in frog. In order to characterize novel TSH secretagogues, we have investigated the effect of frog (Rana ridibunda) vasoactive intestinal polypeptide (VIP) (fVIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) (fPACAP38 and PACAP27) on TSH release from bullfrog (Rana catesbeiana) pituitary cells in primary culture. Incubation of pituitary cells for 24h with graded concentrations of fVIP, fPACAP38 and PACAP27 (10(-9) to 10(-6)M) induced a dose-dependent stimulation of TSH release with minimum effective doses of 10(-9)M for fVIP and 10(-8)M for fPACAP38 and PACAP27. The PAC1-R/VPAC2-R antagonist PACAP(6-38) (10(-7) and 10(-6)M) dose-dependently suppressed the stimulatory effects of fVIP and fPACAP38 (10(-7)M each). Likewise, this antagonist (10(-6) and 10(-5)M) dose-dependently attenuated the stimulatory effect of PACAP27 (10(-7)M). On the other hand, the VPAC1-R/VPAC2-R antagonist [d-pCl-Phe(6), Leu(17)]VIP (10(-6) and 10(-5)M) dose-dependently inhibited the stimulatory effect of fVIP (10(-9)M) and PACAP27 (10(-8)M), but did not affect the response to fPACAP38 (10(-8)M). These data indicate that, in amphibians, the activity of thyrotrophs can be regulated by VIP and PACAP acting likely through VPAC2-R and PAC1-R.  相似文献   

5.
Pituitary adenylate cyclase-activating polypeptide (PACAP) potentiates glucose-induced insulin release and increases cytosolic Ca2+ concentration ([Ca2+]i) in islet beta-cells in a concentration-dependent manner with two peaks at 10(-13) and 10(-9) M. PAC1 receptor (PAC1-R) and VPAC2 receptor (VPAC2-R) are expressed in pancreatic beta-cells and thought to be involved in insulin release. We aimed to determine the receptor types involved in the [Ca2+]i responses to 10(-13) and 10(-9) M PACAP. We measured [Ca2+]i in beta-cells and examined comparative effects of PAC1-R-selective agonist maxadilan, its antagonist M65, VPAC2-R-selective agonist Ro25-1553, and native ligands of PACAP and VIP. In the presence of 8.3 mM glucose, maxadilan, Ro25-1553, PACAP, and VIP at 10(-13) and 10(-9) M all increased [Ca2+]i. PACAP and maxadilan elicited greater effects at 10(-9) M than at 10(-13) M both in the incidence and amplitude of [Ca2+]i responses. For VIP and Ro25-1553, in contrast, the effects at 10(-9) and 10(-13) M were comparable. Furthermore, the amplitude of [Ca2+]i responses to 10(-9) M PACAP, but not 10(-13) M PACAP, was suppressed by M65. The results suggest that VPAC2-R and PAC1-R contribute equally to [Ca2+]i responses to sub-picomolar concentrations of PACAP, while PAC1-R has greater contribution to [Ca2+]i responses to nanomolar concentrations of this peptide.  相似文献   

6.
Gouffi K  Santini CL  Wu LF 《FEBS letters》2002,522(1-3):65-70
Misfolding of the prion protein yields amyloidogenic isoforms, and it shows exacerbating neuronal damage in neurodegenerative disorders including prion diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) potently stimulate neuritogenesis and survival of neuronal cells in the central nervous system. Here, we tested these neuropeptides on neurotoxicity in PC12 cells induced by the prion protein fragment 106-126 [PrP (106-126)]. Concomitant application of neuropeptide with PrP(106-126) (5x10(-5) M) inhibited the delayed death of neuron-like PC12 cells. In particular, PACAP27 inhibited the neurotoxicity of PrP(106-126) at low concentrations (>10(-15) M), characterized by the deactivation of PrP(106-126)-stimulated caspase-3. The neuroprotective effect of PACAP27 was antagonized by the selective PKA inhibitor, H89, or the MAP kinase inhibitor, U0126. These results suggest that PACAP27 attenuates PrP(106-126)-induced delayed neurotoxicity in PC12 cells by activating both PKA and MAP kinases mediated by PAC1 receptor.  相似文献   

7.
The conformation of pituitary adenylate cyclase activating polypeptide with 27 residues (PACAP27) has been determined by two-dimensional NMR and CD spectroscopies and distance geometry in 25% methanol. Residues 9-20 and 22-25 have well-defined conformations but other residues do not show ordered conformations. The conformation of residues 9-20 is composed of three distinct regions of beta turn-like conformation (residues 9-12), alpha helix (residues 12-14) and the looser helical conformation (residues 15-20), while residues 22-24 form alpha helix. PACAP27 has a 2 helices separated by a disordered region similar to a VIP analog reported by Fry et al. but is distinct from the VIP analog in the position of the first helix, which is shifted by 2 residues toward the C-terminus, and in the form of the second helix [Fry, D.C., Madison, V.S., Bolin, D.R., Greeley, D.N., Toome, V. and Wegrzynski, B.B. (1989) Biochemistry 28, 2399-2409].  相似文献   

8.
Onoue S  Endo K  Ohshima K  Yajima T  Kashimoto K 《Peptides》2002,23(8):1471-1478
Pituitary adenylate cyclase activating polypeptide (PACAP) modulates neurotransmission in the central and peripheral nervous systems. In vitro and in vivo studies have shown the protective effects of PACAP against neuronal damage induced by ischemia and agonists of NMDA-type glutamate receptors. Here, we demonstrated that PACAP also protected against neuronal toxicity induced by beta-amyloid (Abeta) peptide, aggregation of which is a causative factor for Alzheimer's disease. PACAP (10(-9)M) rescued 80% of decreased cell viability and 50% of elevated caspase-3 activity that resulted from exposure of PC12 cells to Abeta. PACAP was at least 10(4)-fold more effective than other neuropeptides including vasoactive intestinal peptide (VIP) and humanin, which correlated with the level of cAMP accumulation. Thus, our results suggested that PACAP attenuates Abeta-induced cell death in PC12 cells through an increase in cAMP and that caspase-3 deactivation by PACAP is involved in the signaling pathway for this neuroprotection.  相似文献   

9.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel hypothalamic peptide structurally related to vasoactive intestinal peptide (VIP) and glucagon like peptide-1(7-36) amide (tGLP-1) in its N-terminal portion. Therefore, their levels of insulinotropic potency were compared using an isolated rat pancreas perfusion. It was found that 0.1 nM PACAP (1-27) amide (PACAP27) significantly stimulated insulin release under a perfusate glucose concentration of 5.5 mM, whereas 1 nM PACAP27 did not under a perfusate glucose concentration of 2.8 mM. The potency was evaluated as tGLP-1 greater than PACAP27 greater than VIP. These results indicate that PACAP is a glucagon superfamily peptide which stimulates insulin release in a glucose dependent manner.  相似文献   

10.
A novel neuropeptide with 38 residues (PACAP38) was isolated from ovine hypothalamic tissues using the pituitary adenylate cyclase activation in rat pituitary cell cultures as a parameter of the biological activity (Miyata et al, Biochem. Biophys. Res. Commun. 164, 567-574, 1989). From the side fractions obtained during the purification of PACAP38, a shorter form peptide with 27 residues corresponding to the N-terminal 27 amino acids of PACAP38 and amidated C-terminus was isolated and named as PACAP27. Synthetic PACAP27 showed a biological activity of adenylate cyclase stimulation comparable to PACAP38. Moreover PACAP27 which shows a considerable homology with vasoactive intestinal polypeptide (VIP) demonstrated a similar vasodepressor activity as VIP, but the adenylate cyclase stimulating activity was about 1000 times greater than VIP.  相似文献   

11.
Both vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) act as neurotransmitters in the central and peripheral nervous systems. Attention has been focused on these neuropeptides because among their numerous biological activities, they have been confirmed to show neuroprotective effects against ischemia and glutamate-induced cytotoxicity. It is well established that glutamate has excitatory effects on neuronal cells, and that excessive glutamate shows potent neurotoxicity, especially in neuronal nitric oxide synthase-containing neurons. Glutamate stimulates the production of nitric oxide (NO) in neurons, and the NO generated is tightly associated with the delayed death of neurons. We examined the effects of these neuropeptides on the glutamate-induced neural actions using PC12 cells, and we confirmed the important activities of PACAP/VIP on the production of NO as well as the delayed cell death stimulated by glutamate.  相似文献   

12.
PACAP (pituitary adenylate-cyclase-activating peptide)-binding receptors were investigated in membranes from the rat pancreatic acinar cell line, AR 4-2J, the rat hippocampus and the human neuroblastoma cell line NB-OK, by 125I-PACAP(1-27) (amino acid residues 1-27 of N-terminal amidated PACAP) binding and adenylate cyclase activation. The relative binding of 125I-PACAP(1-27) to the receptor, and ability to activate adenylate cyclase were PACAP greater than or equal to PACAP(1-27) greater than PACAP(2-38) greater than PACAP(1-9)-VIP(10-28)(PACAP-VIP) greater than PACAP(2-27) greater than [Ser9,Tyr13]VIP greater than [Tyr13]VIP greater than or equal to [Ser9]VIP greater than or equal to VIP(1-23)-PACAP(24-27)(VIP-PACAP) greater than VIP (vasoactive intestinal peptide). The N-terminal moiety of PACAP(1-27) was more important than the three amino acids at the C-terminus for 125I-PACAP(1-27)-binding site recognition. For rat pancreatic 125I-VIP-binding sites tested with 125I-VIP, the order of binding affinity was PACAP = PACAP(1-27) greater than or equal to VIP = [Ser9]VIP = [Tyr13]VIP = [Ser9,Try13]VIP greater than or equal to PACAP-VIP greater than or equal to VIP-PACAP greater than PACAP(2-38) = PACAP(2-27). Pancreatic 125I-VIP-binding sites, when compared to 125I-PACAP(1-27)-binding sites, showed little specificity and only weak coupling, so that PACAP and VIP-PACAP acted only as partial VIP agonists on adenylate cyclase.  相似文献   

13.
Four novel bioactive peptides were isolated from the red-bellied newt, Cynops pyrrhogaster, using a bioassay system monitoring the rectum contraction of the Japanese quail, Coturnix japonica. As these peptides are structurally related to vasoactive intestinal polypeptide (VIP), we termed these peptides newt VIP-related peptides 1, 2, 3, and 4 (NVRP-1, -2, -3, and -4). The primary sequences of these peptides were determined to be HSDAVFTDNYSRLLGKTALKNYLDGALKKE (NVRP-1), HSDAVFTDNYSRLLAKTALKNYLDGALKKE (NVRP-2), HSDAVFT-DNYSRLLGKIALKNYLDEALKKE (NVRP-3), and HSDAVFTDNYSRLLGKT-ALKNYLDSALKKE (NVRP-4). The N-terminal regions of these NVRPs possessed homology at the amino-acid level to various VIP, while the NVRP C-termini differed from VIPs significantly. All of the VIP consist of 28 amino-acid residues with amidated forms at the C-termini, whereas NVRPs possess 30 amino-acid residues and have free forms at the C-termini. NVRPs exert relaxant activities on isolated quail rectums in a dose-dependent manner, with threshold concentrations between 1 x 10(-8) and 3 x 10(-8) M. NVRPs also exhibited potent relaxant activities acting on the newt duodenum at 3 x 10(-8) M. As yet, this is the first isolation of biologically active VIP-related peptides from urodele.  相似文献   

14.
Abstract: The presence of receptors for the novel neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been recently demonstrated in the external granule cell layer of the cerebellum, a germinative matrix that generates the majority of cerebellar interneurons. In the present study, we have taken advantage of the possibility of obtaining a culture preparation that is greatly enriched in immature cerebellar granule cells to investigate the effect of PACAP on the adenylyl cyclase and phospholipase C transduction pathways. The two molecular forms of PACAP, i.e., 27-(PACAP27) and 38-(PACAP38) amino-acid forms of PACAP, induced a dose-dependent stimulation of cyclic AMP production in granule cells. The potencies of PACAP27 and PACAP38 were similar (ED50 = 0.12 ± 0.01 and 0.23 ± 0.07 n M , respectively), whereas vasoactive intestinal polypeptide (VIP) was ∼100 times less potent. PACAP27 and PACAP38 also induced a dose-dependent stimulation of polyphosphoinositide breakdown (ED50 = 19.1 ± 6.3 and 13.4 ± 6.0 n M , respectively), whereas VIP had no effect on polyphosphoinositide metabolism. The effect of PACAP38 on inositol phosphate formation was significantly reduced by U-73122 and by pertussis toxin, indicating that activation of PACAP receptors causes stimulation of a phospholipase C through a pertussis toxin-sensitive G protein. In contrast, forskolin and dibutyryl cyclic AMP did not affect PACAP-induced stimulation of inositol phosphates. Taken together, the present results demonstrate that PACAP stimulates independently the adenylyl cyclase and the phospholipase C transduction pathways in immature cerebellar granule cells. These data favor the concept that PACAP may play important roles in the control of proliferation and/or differentiation of cerebellar neuroblasts.  相似文献   

15.
Abstract: In this study, the effects of three related peptides, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, and vasoactive intestinal peptide (VIP), on cyclic AMP (cAMP) accumulation and intracellular Ca2+ concentration ([Ca2+]i) were compared in N1E-115 cells. PACAP38 and PACAP27 stimulated cAMP accumulation up to 60-fold with EC50 values of 0.54 and 0.067 n M , respectively. The effect of VIP on cAMP accumulation was less potent. The binding of 125I-PACAP27 to intact cells was inhibited by PACAP38 and PACAP27 (IC50 values of 0.44 and 0.55 n M , respectively) but not by VIP. In fura-2-loaded cells, both PACAP38 and PACAP27 increased [Ca2+]i with EC50 values around 10 n M . The interactions of these three peptides with ionomycin, a Ca2+ ionophore, and 4β-phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were also determined. Ionomycin increased the cAMP accumulation caused by all three peptides. With low concentrations of PACAP38 or PACAP27, the effect of PMA was inhibitory, whereas at higher concentrations of PACAP (>1 n M ), the effect of PMA was stimulatory. Similar to other agents that elevate cAMP, PACAP38 was an effective stimulator of neurite outgrowth. These results show that (a) PACAP27 and PACAP38 stimulate cAMP accumulation and increase [Ca2+]i through the type I PACAP receptors in N1E-115 cells, (b) ionomycin enhances cAMP accumulation by all three peptides, and (c) activation of protein kinase C has a dose-dependent stimulatory or inhibitory effect on the PACAP38- or PACAP27-stimulated cAMP accumulation.  相似文献   

16.
Effects of pituitary adenylate cyclase-activating polypeptide (PACAP38) and PACAP27 on the cardiovascular and respiratory systems were examined and compared to those of vasoactive intestinal polypeptide (VIP) in anesthetized beagle dogs. Intravenous PACAP27 and PACAP38 produced a decrease in mean arterial blood pressure (MBP), and an increase in both femoral arterial blood flow (ABF) and in frequency of respiration (FR) with a dose-dependent relationship between 10 and 300 pmol/kg. PACAP27 produced a dose-dependent increase in heart rate (HR) between 10 and 300 pmol/kg while PACAP38 induced tachycardia which was not dose-dependent. Administration of 300 pmol/kg PACAP38 and PACAP27 produced extreme hypertension after transient hypotension. PACAP38 produced severe bradycardia after transient tachycardia. The cardiovascular actions of PACAP38 were persistent compared to those of PACAP27. Intravenous injection of 10-300 pmol/kg VIP brought about hypotension, tachycardia and an increase in ABF and FR with a dose-dependent relationship. VIP, at 2000 pmol/kg, did not produce the biphasic response obtained by a large dose of PACAP38. The present studies demonstrate that PACAP partially possesses VIP-like cardiovascular and respiratory actions and that the C-terminal 11 amino acid residues of PACAP38 are presumably responsible for a prolongation of its actions.  相似文献   

17.
Vasoactive intestinal polypeptide (VIP)-immunoreactive nerves have been demonstrated in close association with the islets of Langerhans, and VIP has been shown to stimulate insulin and somatostatin secretion. Using [125I]VIP and membranes prepared from rat insulinoma (RIN) cells, i.e., the subclones m5F (m5F; mainly insulin-secreting) and 14B (14B; mainly somatostatin-secreting), it was found that VIP (10(-10)-10(-7) M) competitively inhibited the binding of [125I]VIP. A single class of high affinity binding sites with Kd values of 0.40 +/- 0.06 nM and 0.36 +/- 0.08 nM for m5F and 14B, respectively, with a corresponding number of binding sites (Bmax) of 163 +/- 20 and 254 +/- 51 fmol/mg protein was observed. The rank order of potency in inhibiting [125I]VIP binding was in both cell lines: VIP greater than helodermin greater than pituitary adenylate cyclase activating polypeptide 1-27 (PACAP27) greater than peptide histidine isoleucine (PHI) greater than secretin. VIP caused a dose-dependent increase in cAMP-formation in both m5F and 14B cell membranes with EC50 values of 3.0 and 3.5 nM, respectively, but VIP (1.10(-9)-3.10(-6) M) had no effect on insulin secretion (over 2 h) from the m5F cells. Thus, the data suggest that the VIP-receptors in these neoplastic rat cell lines, despite an apparent coupling to adenylate cyclase activity, seem to be functionally uncoupled to an effect on insulin secretion following an acute exposure to VIP.  相似文献   

18.
The concentration of PACAP 1-38 in porcine antrum amounted to 15.4+/-7.9 and 20.3+/-8 pmol/g tissue in the mucosal and muscular layers. PACAP immunoreactive (IR) fibres innervated the muscular (co-localised with VIP) and submucosal/mucosal layers (some co-storing VIP and CGRP) including myenteric and submucosal plexus and blood vessels. Only myenteric nerve cell bodies contained PACAP-IR (co-storing VIP). In isolated perfused antrum, vagus nerve stimulation (8 Hz) and capsaicin (10(-5) M) increased PACAP 1-38 release. PACAP 1-38 (10(-9) M) increased substance P (SP), gastrin releasing peptide (GRP) and VIP release. PACAP 1-38 (10(-8) M) inhibited gastrin secretion and stimulated somatostatin secretion and motility dose-dependently. PACAP-induced motility was strongly inhibited by the antagonist PACAP 6-38 but also by atropine and substance P-antagonists (CP99994/SR48968) but PACAP 6-38 had no effect on vagus-induced secretion or motility. Conclusion: PACAP 1-38 may be involved in antral motility and secretion by interacting with cholinergic, SP-ergic, GRP-ergic and/or VIP-ergic neurones, and may also be involved in afferent reflex pathways.  相似文献   

19.
Chronic obstructive pulmonary disease is a major clinical disorder usually associated with cigarette smoking. A central feature of chronic obstructive pulmonary disease is inflammation coexisting with an abnormal protease/antiprotease balance, leading to apoptosis and elastolysis. In an in vitro study of rat lung alveolar L2 cells, cigarette smoke extract (CSE) induced apoptotic cell death. Exposure of L2 cells to CSE at a concentration of 0.25% resulted in a 50% increase of caspase-3 and matrix metalloproteinase (MMP) activities. Specific inhibitors for caspases and MMPs attenuated the cytotoxicity of CSE. RT-PCR amplification identified VPAC2 receptors in L2 cells. A radioligand-binding assay with (125)I-labeled vasoactive intestinal peptide (VIP) found high affinity and saturable (125)I-labeled VIP-binding sites in L2 cells. VIP and pituitary adenylate cyclase-activating polypeptide (PACAP27) were approximately equipotent for both VIP receptor binding and stimulation of cAMP production in L2 cells. Both neuropeptides, at concentrations higher than 10(-13) m, produced a concentration-dependent inhibition of CSE-induced cell death in L2 cells. VIP, at 10(-7) m, reduced CSE-stimulated MMP activity and caspase-3 activation. The present study has shown that VIP and PACAP27 significantly attenuate the cytotoxicity of CSE through the activation of VPAC2 receptor, and the protective effect of VIP may partly be the result of a reduction in the CSE-induced stimulation of MMPs and caspases.  相似文献   

20.
Pituitary adenylate cyclase activating polypeptide (PACAP) occurs in two bioactive forms, PACAP-38 and PACAP-27 that have identical N-terminal sequences but differ by the presence of a C-terminal 11 residue elongation in the former. Although VIP and PACAP have several similar biological actions due to their amino acid sequence similarity, we have found that they evoke opposite responses in the guinea pig gallbladder smooth muscle, where PACAP induces contraction while VIP causes relaxation. In addition the response to PACAP-38 is four times lower than that of PACAP-27. In a previous study we have reported the role of the N-terminal α-helical regions of PACAP-27 which play a key role in gallbladder contraction. In the present study the biological action on the guinea pig gallbladder was investigated using a synthetic mini-library of C-terminally deleted peptides related to PACAP-38. The effects caused by residues within the C-terminus are not a result of a response via the M-receptor or Na+ channel, but most likely arise from a delicate balance between the differential effects of PACAP-38 on specific PAC1 and VPACs receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号