首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of our research is to investigate morphology, zoospore ultrastructure, and molecular placement of six strains in the Asterophlyctis (Chytridiales) lineage. In previous molecular analyses strain JEL 186, putatively Asterophlyctis sarcoptoides, placed as basal in family Chytriomycetaceae. Recent sampling for chytrids resulted in isolation of five strains (WJD 209, MP 058, JEL 524, JEL 857, and JEL 885) molecularly related to strain JEL 186. Our morphological evaluations reveal that strains JEL 186 and WJD 209 are members of Asterophlyctis. Strain WJD 209 is considered representative of the type, A. sarcoptoides, and strain JEL 186 a new species, Asterophlyctis michiganensis. The four strains MP 058, JEL 524, JEL 857, and JEL 885 are distinct from Asterophlyctis, and we consider them as members of a new genus, Wheelerophlyctis, composed of two species, Wheelerophlyctis interior and Wheelerophlyctis interiexterior. Asterophlyctis and Wheelerophlyctis are sister taxa and we demarcate that lineage as Asterophlyctaceae. The two genera also have similar zoospore ultrastructure, which is unique among strains in Chytridiales. In consideration of their molecular position and zoospore ultrastructure, we hypothesize that Asterophlyctis and Wheelerophlyctis represent a bridge between Chytriomycetaceae and Chytridiaceae. This research expands our concepts of systematics and zoospore ultrastructural variation in Chytridiales.  相似文献   

2.
While surveying chytrid diversity in lakes and streams, we found on cellulosic bait a chytrid that had both monocentric and polycentric thallus forms. We brought this chytrid into axenic culture from three sites in eastern North America, studied its thallus development and zoospore ultrastructure, and compared its 28S rDNA sequence with those of other members of the Chytridiomycota. Thallus morphology matched that described for the rare chytrid, Cladochytrium polystomum Zopf. Sporangia were spherical and produced numerous long discharge tubes. After discharge, zoospores remained in spherical clusters at the tips of the inoperculate openings of discharge tubes. After 10–30 min zoospores either swam away or encysted in place. Zoospore ultrastructural features included a cell coat, flagellar plug, and paracrystalline inclusion, features typical of members of the Chytridiales. However, the flagellar apparatus structure and organellar organization differed from that of zoospores previously described. Based on its molecular phylogeny and its zoospore ultrastructural features, we classify C. polystomum as a member of the Chytridiaceae in the Chytridiales. Because its thallus development and its ribosomal DNA sequences diverged decidedly from those of Cladochytrium tenue Nowak, the type species of Cladochytrium, we erected Zopfochytrium as a new genus for this chytrid.  相似文献   

3.
4.
Recently, molecular and ultrastructural analyses have resulted in revised phylogenetic hypotheses in the phylum Chytridiomycota. The order Chytridiales, once considered monophyletic, has been subdivided into several new orders. However, the most recent analyses indicate that the emended Chytridiales is also polyphyletic. One monophyletic lineage in Chytridiales includes Cladochytrium, Nowakowskiella, and five other genera. Many of the chytrids in this clade have often been observed growing on decaying plant tissue and other cellulosic substrates from aquatic habitats and moist soils. In this study we analysed combined nu-rRNA gene sequences (partial SSU and LSU) of 30 isolates from North American aquatic and soil samples. Based on molecular monophyly and zoospore ultrastructure, we designate this clade as a new order, Cladochytriales, which includes four families: Cladochytriaceae, Nowakowskiellaceae, Septochytriaceae fam. nov., and Endochytriaceae.  相似文献   

5.
《Mycological Research》2006,110(8):898-915
In the order Chytridiales, Rhizophydium is a morphologically defined genus based upon the production of a monocentric, inoperculate, epibiotic sporangium, an endobiotic rhizoidal axis which branches, and an epibiotic resting spore. Despite its simple morphology, over 220 species of Rhizophydium have been described. Recent phylogenetic analyses using nuLSU rRNA (28 S rRNA) gene sequences of a geographically diverse sampling of Rhizophydium cultures revealed that the classical genus Rhizophydium is genetically more variable than previously understood and actually represents multiple genera. In the present study, we use zoospore ultrastructural characters and 28 S rRNA and 5.8 S ribosomal gene sequences of 96 isolates in culture to circumscribe the monophyletic Rhizophydium clade as a new order, Rhizophydiales. Correspondingly, zoospores of members of the Rhizophydiales exhibit a unique suite of ultrastructural character states that further define the order and distinguish it from the order Chytridiales. Molecular analyses reveal several strongly supported clades within the Rhizophydiales. Three of those clades encompass a broad range of isolates and are defined as new families Rhizophydiaceae, Terramycetaceae, and Kappamycetaceae. To resolve close relationships within Terramycetaceae, combined 28 S rRNA and ITS1–5.8 S–ITS2 sequences were analysed and details of zoospore ultrastructural character states determined, with two new genera, Terramyces and Boothiomyces, described. Two species formerly classified in Rhizophydium are transferred to the new genera. This work provides a framework for additional taxonomic revisions within the new order Rhizophydiales and compares genetic variation useful in defining genera, species, and populations within this lineage of chytrids. A broader sampling of representatives is needed before taxonomic decisions can be made for remaining clades within the Rhizophydiales.  相似文献   

6.
During the last decade, our concept of chytrid systematics has dramatically changed based on molecular phylogeny and zoospore ultrastructure. In contrast with well-studied saprotrophic chytrids, only a few obligate parasitic chytrids have been investigated with modern methods. Here, we investigate the novel chytrid culture KS93 that is parasitic on the diatom Aulacoseira granulata. Thallus morphology of KS93 was characterized by a spherical, stalked zoosporangium with a single, apical inoperculate discharge pore and zoospore discharge as a mass in a vesicle. A cross-inoculation experiment revealed that the infection of KS93 was specific to A. granulata. Zoospores of KS93 possessed the characters of the Group I type zoospore of the Chytriomycetaceae in the Chytridiales, but does not appear to have a paracrystalline inclusion. Additionally, KS93 also possessed a globule-type KAS (kinetosome-associated structure), first reported here for members of Chytriomycetaceae. In our molecular phylogeny, KS93 was placed in the basal position of the Chytriomycetaceae and was distinguished from any known species in the family. Morphological features of KS93 were distinct from those of any other taxa in the Chytriomycetaceae and from any described chytrids. Based on these results, we describe this chytrid as Pendulichytrium sphaericum gen. et sp. nov. in the family Chytriomycetaceae.  相似文献   

7.
8.
Hyaloscyphaceae is the largest family in Helotiales, Leotiomycetes. It is mainly characterized by minute apothecia with well-differentiated hairs, but its taxonomic delimitation and infrafamilial classification remain ambiguous. This study performed molecular phylogenetic analyses using multiple genes including the ITS-5.8S rDNA, the D1–D2 region of large subunit of rDNA, RNA polymerase II subunit 2, and the mitochondrial small subunit. The primary objective was to evaluate the phylogenetic utility of morphological characters traditionally used in the taxonomy of Hyaloscyphaceae through reassessment of the monophyly of this family and its genera. The phylogenetic analyses inferred Hyaloscyphaceae as being a heterogeneous assemblage of a diverse group of fungi and not supported as monophyletic. Among the three tribes of Hyaloscyphaceae only Lachneae formed a monophyletic lineage. The presence of hairs is rejected as a synapomorphy, since morphologically diversified hairs have originated independently during the evolution of Helotiales. The true- and false-subiculum in Arachnopezizeae are hypothesized to have evolved through different evolutionary processes; the true-subiculum is likely the product of a single evolutionary origin, while the false-subiculum is hypothesized to have originated multiple times. Since Hyaloscyphaceae sensu lato was not resolved as monophyletic, Hyaloscyphaceae sensu stricto is redefined and only applied to the genus Hyaloscypha.  相似文献   

9.
10.
The genus Agaricus was recently rearranged to accommodate numerous tropical taxa. Accordingly, the genus was split into six subgenera and 22 sections of which 12 are included in A. subg. Pseudochitonia. Preliminary data indicated that three putative new species belong to this subgenus. Our objectives were to describe these species, to determine to which sections they belong, and to experience the interest of some traditional traits in this new context. We morphologically described Agaricus coniferarum from France and Portugal, Agaricus iranicus from Iran, and Agaricus lusitanicus from Portugal. Multi-gene phylogenetic analyses based on ITS, LSU, and tef1 sequence data of representatives of the 12 sections clearly indicated that A. coniferarum and A. lusitanicus are placed in Agaricus sect. Bohusia, while A. iranicus is in A. sect. Sanguinolenti. Incidentally, we replaced the illegitimate name Agaricus magnivelaris by Agaricus fiardianus. In a phylogenetic tree, based on all available ITS sequence data and focussing on six related sections, we examined the phylogenetic distribution of various characters. The intensity of red discolouration when the sporocarp is rubbed or cut appeared as a phylogenetically weak informative trait. We propose a determination key leading to a group of three hardly distinguishable sections (Bohusia, Nigrobrunnescentes, and Sanguinolenti).  相似文献   

11.
Seventeen fructose-6-phosphate phosphoketolase-positive bacterial strains were isolated from the digestive tract of wild pigs (Sus scrofa). Most of them were identified as Bifidobacterium boum according to sequences of 16S rRNA gene. Two strains isolated from the small intestine content had unusual morphology of cells in comparison with bifidobacteria. Cells growing in liquid anaerobic media were regular shaped rods arranged mostly in pairs. These isolates showed relatively low 16S rRNA gene sequence similarities (maximum identity of 94%) to members of the family Bifidobacteriaceae. Nevertheless, phylogenetic analyses of 16S rRNA, hsp60 and xfp gene sequences revealed that these strains are more related to recently described Neoscardovia, Aeriscardovia and other scardovial genera, than to Bifidobacterium species. Partial gene sequences of other phylogenetic markers showed low (65.8–89.5%) similarities to genome sequences of bifidobacteria and Gardnerella vaginalis. The major fatty acids detected in cells of the representative strain DPTE4T were C16:0, C18:1, C14:0. The peptidoglycan type of the DPTE4T strain was A3β l-Orn(l-Lys)-l-Ser(l-Ala)-l-Ala2. Polar lipid analysis revealed two phosphoglycolipids and phospholipids, a glycolipid and diphosphatidylglycerol. The results of phylogenetic, genotypic and phenotypic analyses support the proposal of a novel taxa, Pseudoscardovia suis gen. nov., sp. nov. (type strain = DPTE4T = DSM 24744T = CCM 7942T).  相似文献   

12.
The Rhizophydiales is the most recently circumscribed order in the Chytridiomycota. Past studies focused on soil chytrids from North America and Australia to determine the range of diversity within this clade of chytrids and established three families (Rhizophydiaceae, Terramycetaceae, and Kappamycetaceae) in the new order. Although Rhizophydiales contains seemingly simple chytrids morphologically, analyses of ribosomal gene sequences and zoospore characters have demonstrated unexpected genetic and ultrastructural diversity, highlighting the need for broader habitat and geographic sampling to reveal the actual diversity within this new order. To enlarge our sampling, in this study we investigated 38 newly cultured chytrids collected from aquatic habitats in Argentina, a territory under-explored for chytrid diversity. From analyses of thallus morphology, zoospore ultrastructure, and 28S and ITS1–5.8S–ITS2 ribosomal gene sequences, we expand the concept of Rhizophydiales, describing seven new families (Alphamycetaceae, Angulomycetaceae, Aquamycetaceae, Globomycetaceae, Gorgonomycetaceae, Pateramycetaceae, and Protrudomycetaceae) and eight new genera (Alphamyces, Angulomyces, Aquamyces, Globomyces, Urceomyces, Gorgonomyces, Pateramyces, and Protrudomyces). Results of this study underscore that even more extensive sampling from varied habitats and geographies is needed to adequately ascertain the diversity of chytrids in the Rhizophydiales.  相似文献   

13.
Genomic studies of the amphibian-killing fungus (Batrachochytrium dendrobatidis, [Bd]) identified three highly divergent genetic lineages, only one of which has a global distribution. Bd strains within these linages show variable genomic content due to differential loss of heterozygosity and recombination. The current quantitative polymerase chain reaction (qPCR) protocol to detect the fungus from amphibian skin swabs targets the intergenic transcribed spacer 1 (ITS1) region using a TaqMan fluorescent probe specific to Bd. We investigated the consequences of genomic differences in the quantification of ITS1 from eight distinct Bd strains, including representatives from North America, South America, the Caribbean, and Australia. To test for potential differences in amplification, we compared qPCR standards made from Bd zoospore counts for each strain, and showed that they differ significantly in amplification rates. To test potential mechanisms leading to strain differences in qPCR reaction parameters (slope and y-intercept), we: a) compared standard curves from the same strains made from extracted Bd genomic DNA in equimolar solutions, b) quantified the number of ITS1 copies per zoospore using a standard curve made from PCR-amplicons of the ITS1 region, and c) cloned and sequenced PCR-amplified ITS1 regions from these same strains to verify the presence of the probe site in all haplotypes. We found high strain variability in ITS1 copy number, ranging from 10 to 144 copies per single zoospore. Our results indicate that genome size might explain strain differences in ITS1 copy number, but not ITS1 sequence variation because the probe-binding site and primers were conserved across all haplotypes. For standards constructed from uncharacterized Bd strains, we recommend the use of single ITS1 PCR-amplicons as the absolute standard in conjunction with current quantitative assays to inform on copy number variation and provide universal estimates of pathogen zoospore loads from field-caught amphibians.  相似文献   

14.
In this study, a polyphasic approach was used to analyze three representative strains (LmiH4, LmiM2 and LmiT21) from a collection of six previously described strains isolated in Tunisia from root nodules of Lupinus micranthus. The phylogenetic analysis of the concatenated rrs, recA and glnII genes showed that strain LmiH4 had 100% concatenated gene sequence identity with the type strain Bradyrhizobium retamae Ro19T. Similarly, strain LmiM2 shared 100% concatenated gene sequence identity with the species Bradyrhizobium valentinum LmjM3T. However, strain LmiT21 showed an identical concatenated gene sequence with reference strain Phyllobacterium sophorae CCBAU03422T. The recA-glnII concatenated protein-coding genes used produced incongruent phylogenies compared with 16S rDNA phylogeny. The nodC gene analysis showed that the strains were phylogenetically divergent to the Bradyrhizobium symbiovars defined to date, and represented two new symbiovars. Plant infection analysis revealed that the three strains showed moderate host range and symbiotic specificities.Based on their symbiotic characteristics, we propose that the three strains isolated from Lupinus micranthus nodules belong to two new symbiovars, with the first denominated lupini within the two species Bradyrhizobium valentinum (type strain LmiM2) and B. retamae (type strain LmiH4), and the second denominated mediterranense within the species P. sophorae (type strain LmiT21).  相似文献   

15.
16.
The genus Chlamydomyzium is a little studied holocarpic oomycete parasite of nematodes of uncertain phylogenetic and taxonomic position. A new holocarpic species, Chlamydomyzium dictyuchoides, is described which has usually refractile cytoplasm and a dictyuchoid pattern of spore release. This new species infects bacteriotrophic rhabditid nematodes and was isolated from diverse geographical locations. Infection was initiated by zoospore encystment on the host surface and direct penetration of the cuticle. A sparsely branched, constricted, refractile thallus was formed which eventually occupied almost the entire host body cavity, often accompanied by complete dissolution of the host cuticle. Walled primary cysts formed throughout the thallus and each cyst released a single zoospore via an individual exit papillum, leaving a characteristic dictyuchoid wall net behind. At later stages of infection some thalli formed thick-walled stellate resting spores in uniseriate rows. Resting spore formation appeared to be parthenogenetic and was not accompanied by the formation of antheridial compartments. These spores had ooplast-like vacuoles and thick multi-layered walls, both of which suggest they were oospores. The maximum likelihood tree of sequences of the small ribosomal subunit (SSU) gene placed this new isolate in a clade before the main saprolegnialean and peronosporalean lines diverge. A second undescribed Chlamydomyzium sp., which has direct spore release forms a paraphyletic clade, close to C. dictyuchoides and Sapromyces. The fine structure of other documented Chlamydomyzium species was compared, including an undescribed (but sequenced) isolate, SL02, from Japan, Chlamydomyzium anomalum and Chlamydomyzium oviparasiticum. Chlamydomyzium as currently constituted is a paraphyletic genus that is part of a group of phylogenetically problematic early diverging clades that lie close to both the Leptomitales and Rhipidiales.  相似文献   

17.
Olpidiopsis porphyrae sp. nov., a marine oomycete endoparasite that infects the commercially cultivated red alga Porphyra yezoensis, is described and its phylogenetic position based on molecular data and ultrastructural morphology is discussed. O. porphyrae infects the host Porphyra by means of encysted zoospores. Spherical-shaped holocarpic thalli develop within the cytoplasm of its algal host, which produce monoplanetic, subapically biflagellate zoospores. The characteristic features of this isolate are the ellipsoidal, unicellular thallus and simple holocarpic zoosporangial development, which show morphological similarity with the genus Olpidiopsis. Laboratory infection experiments with a wide range of green, brown, and red algae revealed that O. porphyrae infects several stages of the bangialean red algae (the genera Bangia and Porphyra). Molecular phylogenetic analyses inferred from both SSU rRNA and cox2 genes showed O. porphyrae branched before the main saprolegnian and peronosporalean lineages within the monophyletic oomycete clade, indicating its phylogenetic separation from them. A single or double K-body-like organelle, which contains tubular inclusions, is found located to one side of the zoospore nucleus and shows similarities to homologous organelles previously described in O. saprolegniae. The ultrastructural morphology of O. porphyrae with zoospore initials containing K-bodies and tubular mitochondrial cristae is characteristic of oomycetes. Group I intron-like multiple insertions were found in the SSU rRNA gene of O. porphyrae. This is the first report of SSU group I introns in the class Oomycetes.  相似文献   

18.
19.
The identification of the conventionally accepted species of Clavulina (Cantharellales, Basidiomycota) in Europe (Clavulina amethystina, Clavulina cinerea, Clavulina cristata, and Clavulina rugosa) is often difficult and many specimens are not straightforwardly assignable to any of those four species, which is why some authors have questioned their identity. In order to assess the status of those species, a morphological examination was combined with the molecular analysis of the ITS region. The same six major clades were obtained in the Bayesian and parsimony phylogenetic analyses, and all six clades were well-supported at least by one of the analyses. Morphological characters, such as the overall branching pattern, the presence and intensity of grey colour, the cristation of the apices, and basidiospore size and shape were to various extents correlated with the phylogenetic signal obtained from the ITS region. The congruence between the molecular analyses and morphology, rather than geographical origin, suggests the existence of several species that can be delimited using a combined phylogenetic and morphological species recognition. The analyses revealed that C. cristata and C. rugosa are well-delimited species. In contrast, more than one taxa could be subsumed under the names C. amethystina and C. cinerea, the taxonomical complexity of which is discussed. The ITS region is proved to be adequate to separate phylogenetic species of Clavulina.  相似文献   

20.
Twelve Acetobacter pasteurianus-related strains with publicly available genomes in GenBank shared high 16S rRNA gene sequence similarity (>99.59%), but average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values and multilocus sequence- and genome-based relatedness analyses suggested that they were divided into four different phylogenetic lineages. Relatedness analyses based on multilocus sequences, 1,194 core genes and whole-cell MALDI-TOF profiles supported that strains LMG 1590T and LMG 1591 (previously classified as the type strains of A. pasteurianus subsp. ascendens and paradoxus, respectively) and strain SLV-7T do not belong to A. pasteurianus. Strain SLV-7T, isolated from Korean traditional vinegar, shared low ANI (<91.0%) and in silico DDH (44.2%) values with all other Acetobacter type strains analyzed in this study, indicating that strain SLV-7T represents a new Acetobacter species. The phenotypic and chemotaxonomic analyses confirmed these results and therefore a new species named Acetobacter oryzifermentans sp. nov. is proposed with SLV-7T (= KACC 19301T = JCM 31096T) as the type strain. Strains LMG 1590T and LMG 1591 shared high ANI (99.4%) and in silico DDH (96.0%) values between them, but shared low ANI (<92.3%) and in silico DDH (<49.0%) values with other type strains analyzed in this study, indicating that strains LMG 1590T and LMG 1591 should be reclassified into a new single species that should be named Acetobacter ascendens sp. nov., comb. nov., with LMD 51.1T (= LMG 1590T = NCCB 51001T) as its type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号