首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Abstract

Finite element modeling (FEM) can predict hip cartilage contact mechanics. This study investigated how subject-specific boundary conditions and joint geometry affect acetabular cartilage contact mechanics using a multi-scale workflow. For two healthy subjects, musculoskeletal models calculated subject-specific hip kinematics and loading, which were used as boundary conditions for FEM. Cartilage contact mechanics were predicted using either generic or subject-specific FEM and boundary conditions. A subject-specific mesh resulted in a more lateral contact. Effects of subject-specific boundary conditions varied between both subjects. Results highlight the complex interplay between loading and kinematics and their effect on cartilage contact mechanics.  相似文献   

2.
The goal of this study was to define the effect on hip contact forces of including subject-specific moment generating capacity in the musculoskeletal model by scaling isometric muscle strength and by including geometrical information in control subjects, hip osteoarthritis and total hip arthroplasty patients. Scaling based on dynamometer measurements decreased the strength of all flexor and abductor muscles. This resulted in a model that lacked the capacity to generate joint moments required during functional activities. Scaling muscle forces based on functional activities and inclusion of MRI-based geometrical detail did not compromise the model strength and resulted in hip contact forces comparable to previously reported measured contact forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号