首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a novel numerical model of the fracture-healing process using interface-capturing techniques, a well-known approach from fields like fluid dynamics, to describe tissue growth. One advantage of this method is its direct connection to experimentally observable parameters, including tissue-growth velocities. In our model, osteogenesis, chondrogenesis and revascularisation are triggered by mechanical stimuli via mechano-transduction based on previously established hypothesis of Claes and Heigele. After experimentally verifying the convergence of the numerical method, we compare the predictions of our model with those of the already established Ulm bone-healing model, which serves as a benchmark, and corroborate our results with existing animal experiments. We demonstrate that the new model can predict the history of the interfragmentary movement and forecast a tissue evolution that appears similar to the experimental results. Furthermore, we compare the relative tissue concentration in the healing domain with outcomes of animal experiments. Finally, we discuss the possible application of the model to new fields, where numerical simulations could also prove beneficial.  相似文献   

2.
Vascular leak syndrome (VLS) is a common and often fatal sequela of multiple bone traumas, and of infectious, toxic, and allergic insults in human patients. Although an animal model for VLS has not been fully established, rats have shown sensitivity to the syndrome that approximates that of the human population. We describe cases of VLS in three-month-old adult and one-month-old Sprague-Dawley rats in an osteogenesis study aimed at optimizing correction of bone hypoplasias and other craniofacial deformities in children, using a mandibular distraction device. In the study reported here, VLS was diagnosed in 40% of the rats that were necropsied after dying or being euthanized early, subsequent to mandibular osteotomy, a procedure that involves minimal bone trauma. The gross and histologic findings, as well as the clinical course of VLS in the rats of the osteogenesis study, were similar to those of documented human cases. Hence, the rat may be a useful animal model to h elp characterize the physiologic and molecular events that accompany this syndrome.  相似文献   

3.
Increased fragility fracture risk with improper healing is a frequent and severe complication of insulin resistance (IR). The mechanisms impairing bone health in IR are still not fully appreciated, which gives importance to studies on bone pathologies in animal models of diabetes. Mice deficient in leptin signaling are widely used models of IR and its comorbidities. Leptin was first recognized as a hormone, regulating appetite and energy balance; however, recent studies have expanded its role showing that leptin is a link between insulin-dependent metabolism and bone homeostasis. In the light of these findings, it is intriguing to consider the role of leptin resistance in bone regeneration. In this study, we show that obese diabetic mice lacking leptin receptor (db/db) are deficient in postnatal regenerative osteogenesis. We apply an ectopic osteogenesis and a fracture healing model, both showing that db/db mice display compromised bone acquisition and regeneration capacity. The underlying mechanisms include delayed periosteal mesenchymatic osteogenesis, premature apoptosis of the cartilage callus and impaired microvascular invasion of the healing tissue. Our study supports the use of the db/db mouse as a model of IR associated bone-healing deficits and can aid further studies of mesenchymatic cell homing and differentiation, microvascular invasion, cartilage to bone transition and callus remodeling in diabetic fracture healing.  相似文献   

4.

Background

Bifocal distraction osteogenesis has been shown to be a reliable method for reconstructing segmental mandibular defects. However, there are few reports regarding the occurrence of inferior alveolar nerve regeneration during the process of distraction. Previously, we reported inferior alveolar nerve regeneration after distraction, and evaluated the regenerated nerve using histological and electrophysiological methods. In the present study, we investigated axons regenerated by bifocal distraction osteogenesis using retrograde transportation of horseradish peroxidase in the mandibles of dogs to determine their type and function.

Methods and Findings

Using a bifocal distraction osteogenesis method, we produced a 10-mm mandibular defect, including a nerve defect, in 11 dogs and distracted using a transport disk at a rate of 1 mm/day. The regenerated inferior alveolar nerve was evaluated by retrograde transportation of HRP in all dogs at 3 and 6 months after the first operation. At 3 and 6 months, HRP-labeled neurons were observed in the trigeminal ganglion. The number of HRP-labeled neurons in each section increased, while the cell body diameter of HRP-labeled neurons was reduced over time.

Conclusions

We found that the inferior alveolar nerve after bifocal distraction osteogenesis successfully recovered until peripheral tissue began to function. Although our research is still at the stage of animal experiments, it is considered that it will be possible to apply this method in the future to humans who have the mandibular defects.  相似文献   

5.
6.
7.
BMP2 is a growth factor that regulates the cell fate of mesenchymal stem cells into osteoblast and adipocytes. However, the detailed signaling pathways and mechanism are unknown. We previously reported a new interaction of Casein kinase II (CK2) with the BMP receptor type-Ia (BMPRIa) and demonstrated using mimetic peptides CK2.1, CK2.2 and CK2.3 that the release of CK2 from BMPRIa activates Smad signaling and osteogenesis. Previously, we showed that mutation of these CK2 sites on BMPRIa (MCK2.1 (476S-A), MCK2.2 (324S-A) and MCK2.3 (214S-A)) induced osteogenesis. However, one mutant MCK2.1 induced osteogenesis similar to overexpression of wild type BMPRIa, suggesting that the effect of this mutant on mineralization was due to overexpression. In this paper we investigated the signaling pathways involved in the CK2-BMPRIa mediated osteogenesis and identified a new signaling pathway activating adipogenesis dependent on the BMPRIa and CK2 association. Further the mechanism for adipogenesis and osteogenesis is specific to the CK2 interaction site on BMPRIa. In detail our data show that overexpression of MCK2.2 induced osteogenesis was dependent on Caveolin-1 (Cav1) and the activation of the Smad and mTor pathways, while overexpression of MCK2.3 induced osteogenesis was independent of Caveolin-1 without activation of Smad pathway. However, MCK2.3 induced osteogenesis via the MEK pathway. The adipogenesis induced by the overexpression of MCK2.2 in C2C12 cells was dependent on the p38 and ERK pathways as well as Caveolin-1. These data suggest that signaling through BMPRIa used two different signaling pathways to induce osteogenesis dependent on CK2. Additionally the data supports a signaling pathway initiated in caveolae and one outside of caveolae to induce mineralization. Moreover, they reveal the signaling pathway of BMPRIa mediated adipogenesis.  相似文献   

8.
We have determined the age-related changes in the growth characteristics and expression of the osteoblast phenotype in human calvaria osteoblastic cells in relation with histologic indices of bone formation during postnatal calvaria osteogenesis. Histomorphometric analysis of normal calvaria samples obtained from 36 children, aged 3 to 18 months, showed an age-related decrease in the extent of bone surface covered with osteoblasts and newly synthesized collagen, demonstrating a progressive decline in bone formation during postnatal calvaria osteogenesis. Immunohistochemical analysis showed expression of type I collagen, bone sialoprotein, and osteonectin in the matrix and osteoblasts, with no apparent age-related change during postnatal calvaria osteogenesis. Cells isolated from human calvaria displayed characteristics of the osteoblast phenotype including alkaline phosphatase (ALP) activity, osteocalcin (OC) production, expression of bone matrix proteins, and responsiveness to calciotropic hormones. The growth of human calvaria osteoblastic cells was high at 3 months of age and decreased with age, as assessed by (3H)-thymidine incorporation into DNA. Thus, the age-related decrease in bone formation is associated with a decline in osteoblastic cell proliferation during human calvaria osteogenesis. In contrast, ALP activity and OC production increased with age in basal conditions and in response to 1,25(OH)2, vitamin D3, suggesting a reciprocal relationship between cell growth and expression of phenotypic markers during human postnatal osteogenesis. Finally, we found that human calvaria osteoblastic cells isolated from young individuals with high bone formation activity in vivo and high growth potential in vitro had the ability to form calcified nodular bone-like structures in vitro in the presence of ascorbic acid and β-glycerophosphate, providing a new model to study human osteogenesis in vitro. J. Cell. Biochem. 64:128–139. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The strontium is an alkaline earth metal found in nature as trace element. Chemically similar to calcium, it is known to be involved in the human bone mineral metabolism. The strontium ranelate has been approved in therapy as drug with both anti-resorption and anabolic effects on bone tissues. Since few data in vivo are available, we used Danio rerio as animal model to evaluate the effects of strontium on skeletal development. First, toxicity assay performed on zebrafish embryos estimated the LC50 around 6 mM. Since several zebrafish bones are formed from cartilage mineralization, we evaluated whether strontium affects cartilage development during embryogenesis. Strontium does not perturb the development of the cartilage tissues before the endochondral osteogenesis takes place. About the mineralization process, we evidentiated an increase of vertebral mineralization respect to controls at lower strontium concentrations whereas higher concentration inhibited mineral deposition in dose dependent fashion. Our results evidentiated, in addition, that the calcium/strontium rate but not the absolute level of strontium modulates the mineralization process during embryonic osteogenesis.Zebrafish represents an excellent animal model to study the role of micronutrients in the development of the tissues/organs because the ions are not absorbed by intestine but assumed by skin diffusion.  相似文献   

10.
ObjectiveHuman chorionic membrane extracts (CMEs) from placenta are known to be a natural biomaterial for bone regeneration, with their excellent osteogenic efficacy on osteoblasts. However, little is known about the regulatory mechanism involved.Methods and ResultsWe have shown the in vitro and in vivo bone‐forming ability of CME using human osteoblasts and bone defect animal models, suggesting that CME greatly enhances osteogenesis by providing an osteoconductive environment for the osteogenesis of osteoblasts. Proteomic analysis revealed that CME contained several osteogenesis‐related stimulators such as osteopontin, osteomodulin, Thy‐1, netrin 4, retinol‐binding protein and DJ‐1. Additionally, 23 growth factors/growth factor–related proteins were found in CME, which may trigger mitogen‐activated protein kinase (MAPK) signalling as a specific cellular signalling pathway for osteogenic differentiation. Microarray analysis showed four interaction networks (chemokine, Wnt signalling, angiogenesis and ossification), indicating the possibility that CME can promote osteogenic differentiation through a non‐canonical Wnt‐mediated CXCL signalling–dependent pathway.ConclusionsThe results of this study showed the function and mechanism of action of CME during the osteogenesis of osteoblasts and highlighted a novel strategy for the use of CME as a biocompatible therapeutic material for bone regeneration.  相似文献   

11.
Spinal supraspinous ligament (SL) osteogenesis is the key risk of ankylosing spondylitis (AS), with an unclear pathogenesis. We previously found that transforming growth factor β1 (TGF-β1), bone morphogenetic proteins (eg BMP2) and type III TGF-β1 receptor (TβRIII) expression were markedly up-regulated in AS-SLs. However, the roles of these closely related molecules in AS are unknown. Here, we showed that BMP2, TGF-β1, TβRIII and S100A4 (a fibroblast marker) were abundant in active osteogenic AS-SL tissues. In vitro, AS-SL fibroblasts (AS-SLFs) showed high BMP2, TGF-β1 and TβRIII expression and auto-osteogenic capacity. We further evaluated the role of TβRIII in the osteogenesis of normal SLFs. BMP2 combined with TGF-β1 induced the osteogenesis of TβRIII-overexpressing SLFs, but the activity was lost in SLFs upon TβRIII knockdown. Moreover, our data suggested that BMP2 combined with TGF-β1 significantly activated both TGF-β1/Smad signalling and BMP2/Smad/RUNX2 signalling to induce osteogenesis of SLFs with TβRIII up-regulation. Furthermore, our multi-strategy molecular interaction analysis approach indicated that TGF-β1 presented BMP2 to TβRIII, sequentially facilitating BMP2 recognition by BMPR1A and promoting the osteogenesis of TβRIII-overexpressing SLFs. Collectively, our results indicate that TGF-β1 combined with BMP2 may participate in the osteogenic differentiation of AS-SLF by acting on up-regulated TβRIII, resulting in excessive activation of both TGF-β1/Smad and BMP2/BMPR1A/Smad/RUNX2 signalling.  相似文献   

12.
Mineral phosphorus (P) used to fertilise crops is derived from phosphate rock, which is a finite resource. Preventing and recycling mineral P waste in the food system, therefore, are essential to sustain future food security and long-term availability of mineral P. The aim of our modelling exercise was to assess the potential of preventing and recycling P waste in a food system, in order to reduce the dependency on phosphate rock. To this end, we modelled a hypothetical food system designed to produce sufficient food for a fixed population with a minimum input requirement of mineral P. This model included representative crop and animal production systems, and was parameterised using data from the Netherlands. We assumed no import or export of feed and food. We furthermore assumed small P soil losses and no net P accumulation in soils, which is typical for northwest European conditions. We first assessed the minimum P requirement in a baseline situation, that is 42% of crop waste is recycled, and humans derived 60% of their dietary protein from animals (PA). Results showed that about 60% of the P waste in this food system resulted from wasting P in human excreta. We subsequently evaluated P input for alternative situations to assess the (combined) effect of: (1) preventing waste of crop and animal products, (2) fully recycling waste of crop products, (3) fully recycling waste of animal products and (4) fully recycling human excreta and industrial processing water. Recycling of human excreta showed most potential to reduce P waste from the food system, followed by prevention and finally recycling of agricultural waste. Fully recycling P could reduce mineral P input by 90%. Finally, for each situation, we studied the impact of consumption of PA in the human diet from 0% to 80%. The optimal amount of animal protein in the diet depended on whether P waste from animal products was prevented or fully recycled: if it was, then a small amount of animal protein in the human diet resulted in the most sustainable use of P; but if it was not, then the most sustainable use of P would result from a complete absence of animal protein in the human diet. Our results apply to our hypothetical situation. The principles included in our model however, also hold for food systems with, for example, different climatic and soil conditions, farming practices, representative types of crops and animals and population densities.  相似文献   

13.
Application of gradual external forces to correct craniofacial deformities challenges many procedures in conventional craniomaxillofacial surgery. Distraction osteogenesis is replacing traditional osteotomies for correction of patients with craniomaxillofacial deficiencies. However, the reverse concept, contraction osteogenesis, has yet to be established for patients with craniomaxillofacial excesses. The purpose of this investigation is to demonstrate the contraction osteogenesis phenomenon applied in a controlled animal model during the craniofacial growth period. Twenty-six 26-day-old rabbits were assigned to one of four groups: 0, control; 1, pin control (pin insertion); 2, no contraction (pins and contraction device application, without active contraction); and 3, contraction (pin insertion, contraction device application, and active contraction). An external fixator was placed across the incisive-maxillary suture, and the effects after 4.5 weeks of contraction at a rate of 0.5 mm twice a week were compared with control groups. The results were assessed by craniometric and cephalometric measurements and by histologic examination. Gross alterations were evident in the contraction group, characterized by midface anteroposterior shortening, maxillary regression, snout deviation, and anterior crossbite. Histologic examination of the contraction group demonstrated a significant increase in osteoblastic activity. Contraction osteogenesis is a new treatment concept in craniofacial development and may offer therapeutic opportunities for shortening skeletal structures without the need of osteotomies, thus taking advantage of the potential of craniofacial growth and remodeling.  相似文献   

14.
15.
The aim of this pilot investigation was to develop a new animal model for studying the effects on osteogenesis of agents used in the guided bone regeneration technique. As test material, a mixture of two osseoconductive materials with different physico-chemical characteristics was used. One component of the mixture was Bio-Oss, a bovine hydroxyapatite; the other was Cerasorb, a synthetic tricalcium phosphate. The mixture consisited of 50 volume percent of Bio-Oss and 50 volume percent of Cerasorb. In in vivo pilot experiment, bone wounds were prepared in the proximal third of both femurs of rabbits. A Cerasorb + Bio-Oss mixture was inserted on the test side and the same amount of sterile buffered physiological solution on the control side. After healing for 4 weeks, the bone segments were embedded and cut without decalcification, using the Exact cutting and grinding system. The density of the newly-formed bone was evaluated histomorphometrically. On the Cerasorb + Bio-Oss test side the bone density was almost 1.5 times higher than that on the control side. These results demonstrated that the applied animal model is appropriate for investigation of the effects on osteogenesis of biocompatible graft materials such as Bio-Oss and Cerasorb.  相似文献   

16.
《Journal of morphology》2017,278(5):621-628
Two successive mechanisms have been described in perichondral ossification: (1) in static osteogenesis, mesenchymal cells differentiate into stationary osteoblasts oriented randomly, which differentiate into osteocytes in the same site; (2) in dynamic osteogenesis, mesenchymal cells differentiate into osteoblasts that are all oriented in the same direction and move back as they secrete collagen fibers. This study is aimed at testing the hypothesis that the ontogenetic sequence static then dynamic osteogenesis observed in the chicken and in the rabbit is homologous and was acquired by the last common ancestor of amniotes or at a more inclusive node. For this we analyze the developmental patterns of Pleurodeles (Caudata, Amphibia) and those of the lizard Pogona (Squamata, Lepidosauria). We processed Pleurodeles larvae and Pogona embryos, prepared thin and ultrathin sections of appendicular bones, and analyzed them using light and transmission electron microscopy. We show that static osteogenesis does not precede dynamic osteogenesis in periosteal ossification of Pleurodeles and Pogona . Therefore, the null hypothesis is rejected and according to the parsimony method the ontogenetic sequence observed in the chicken and in the rabbit are convergent. In Pleurodeles and Pogona dynamic osteogenesis occur without a previous rigid mineralized framework, whereas in the chicken and in the rabbit dynamic osteogenesis seems to take place over a mineralized support whether bone (in perichondral ossification) or calcified cartilage (in endochondral ossification). Interestingly, in typical dynamic osteogenesis, osteoblasts show an axis (basal nucleus—distal endoplasmic reticulum) perpendicular to the front of secreted unmineralized bone matrix, whereas in Pleurodeles and Pogona this axis is parallel to the bone matrix.  相似文献   

17.
目的:探讨三维颌骨牵张治疗颌骨畸形的临床效果。方法:回顾性分析我院2005年1月-2011年6月收治的颌骨畸形患者42例,根据牵张方法不同分为观察组和对照组,观察组采用三维颌骨牵张,对照组采用平行于矢状轴方向进行牵张,比较两组的牵张效果。结果:术后随访6~24个月,两组牵张时间进行比较,t=7.824,P<0.05,两组牵张时间差异有统计学意义。观察组无牵引器松动而发生发生牵张失败的病例,观察组无失败病例,对照组为6例,占28.57%,x2=4.861,P<0.05,两组牵张失败率差异有统计学意义。观察组与对照组患者咬颌关系(x2=5.091,P<0.05)、颞颌关节(x2=6.431,P<0.05)、颜面外观(x2=4.434,P<0.05)比较,两组差异有统计学意义。结论:三维颌骨牵张法能达到成骨快,成骨质量高的要求,因此在下颌骨正畸过程中适宜采用三维颌骨牵张法。  相似文献   

18.
19.
Exploring the molecular mechanisms that regulate the osteogenesis of human mesenchymal stem cells (hMSCs) will bring us more efficient methods for improving the treatment of bone-related diseases. In this study, we analyzed the effects of miR-31 on the osteogenesis of hMSCs. The overexpression of miR-31 repressed the osteogenesis of hMSCs, whereas the downregulation enhanced this process. SATB2 was testified to be a direct target of miR-31, and its effects on the osteogenesis were also described. Most importantly, the knockdown of SATB2 attenuated miR-31’s osteogenic effects. Taken together, our findings suggest that miR-31 regulates the osteogenesis of hMSCs by targeting SATB2.  相似文献   

20.
《Cytotherapy》2014,16(8):1073-1079
Background aimsDecreased bone formation with age is believed to arise, at least in part, because of the influence of the senescent microenvironment. In this context, it is unclear whether multipotent stromal cell (MSC)-based therapies would be effective for the treatment of bone diseases.MethodsWith the use of a heterotopic bone formation model, we investigated whether MSC-derived osteogenesis is impaired in aged mice compared with young mice.ResultsWe found that bone formation derived from MSCs is not reduced in aged mice. These results are supported by the unexpected finding that conditioned media collected from ionizing radiation–induced senescent MSCs can stimulate mineralization and delay osteoclastogenesis in vitro.ConclusionsOverall, our results suggest that impaired bone formation with age is mainly cell-autonomous and provide a rationale for the use of MSC-based therapies for the treatment of bone diseases in the elderly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号