首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Food quality is an important consideration in the foraging strategy of all animals, including herbivores. Those that can detect and assess the nutritional value of plants from afar, using senses such as smell and sight, can forage more efficiently than those that must assess food quality by taste alone. Selective foraging not only affects herbivore fitness but can influence the structure and composition of plant communities, yet little is known about how olfactory and visual cues help herbivores to find preferred plants. We tested the ability of a free‐ranging, generalist mammalian browser, the swamp wallaby Wallabia bicolor, to use olfactory and visual plant cues to find and/or browse differentially on Eucalyptus pilularis seedlings grown under different nutrient conditions. Low‐nutrient seedlings differed from high‐nutrient seedlings, having lighter coloured leaves, red stems and lower biomass and nitrogen content. In the absence of visual cues, wallabies used odour to differentiate vials containing cut seedlings. They visited and investigated patches with high‐nutrient seedling odour most, followed by patches with low‐nutrient seedling odour, and patches with no added odour least. However, when visual and olfactory cues of seedlings were present, wallabies reversed their foraging response and were more likely to browse low‐ than high‐nutrient seedlings. This browsing difference, in turn, disappeared when long‐range visual cues were reduced by pinning seedlings horizontal to the ground. We suggest that visual cues overrode the effects of olfactory cues on browsing patterns of intact seedlings. Our study shows that herbivores can respond to odours of higher nutrient plants but in ecologically realistic scenarios they use a variety of visual and olfactory cues, with a context‐dependent outcome that is not always selection of high nutrient food. Our results demonstrate the importance of testing the sensory abilities of herbivores in realistic multi‐sensory settings to understand their function in selective foraging.  相似文献   

2.
Although the abilities of prey to detect and respond to chemical substances associated with a predator have been widely reported, the factors promoting the evolution of responses to prey alarm cues vs. predator odours are still vague. In this article, we combined field research with laboratory experiments to explore which chemical substance associated with predator activity (predator odour, conspecific or heterospecific alarm substances) induces defence responses in the aquatic oligochaete Stylaria lacustris, which is vulnerable to common littoral predators. The field results indicated that predators injure the oligochaetes and a great proportion, up to 45% of individuals in the population, were found to be damaged. The results of the laboratory experiments revealed that chemical odours from damselfly larvae feeding on S. lacustris did not induce the defence response in the oligochaetes. On the contrary, oligochaetes detected and responded to alarm substances from damaged conspecifics alone and substances from damaged cladoceran Daphnia magna. We discussed conditions favouring the responses to damage released prey alarm cues instead of predator odours in Stylaria lacustris. Our data suggest that the selection of responses to alarm cues from damaged prey vs. predator odours may be dependent on three factors: (1) non-species-specific predation, (2) divergence of food niche of the different stages of the predator and (3) complex food web with multiple predators. Handling editor: S. Declerk  相似文献   

3.
Homing studies have provided tantalizing evidence that the remarkable ability of shearwaters (Procellariiformes) to pinpoint their breeding colony after crossing vast expanses of featureless open ocean can be attributed to their assembling cognitive maps of wind-borne odours but crucially, it has not been tested whether olfactory cues are actually used as a system for navigation. Obtaining statistically important samples of wild birds for use in experimental approaches is, however, impossible because of invasive sensory manipulation. Using an innovative non-invasive approach, we provide strong evidence that shearwaters rely on olfactory cues for oceanic navigation. We tested for compliance with olfactory-cued navigation in the flight patterns of 210 shearwaters of three species (Cory''s shearwaters, Calonectris borealis, North Atlantic Ocean, Scopoli''s shearwaters, C. diomedea Mediterranean Sea, and Cape Verde shearwaters, C. edwardsii, Central Atlantic Ocean) tagged with high-resolution GPS loggers during both incubation and chick rearing. We found that most (69%) birds displayed exponentially truncated scale-free (Lévy-flight like) displacements, which we show are consistent with olfactory-cued navigation in the presence of atmospheric turbulence. Our analysis provides the strongest evidence yet for cognitive odour map navigation in wild birds. Thus, we may reconcile two highly disputed questions in movement ecology, by mechanistically connecting Lévy displacements and olfactory navigation. Our approach can be applied to any species which can be tracked at sufficient spatial resolution, using a GPS logger.  相似文献   

4.
Coral planulae are induced to settle and metamorphose by contact with either crustose coralline algae or marine bacterial biofilms. Larvae of two coral species, Pocillopora damicornis and Montipora capitata, which respond to different metamorphic cues, were utilized to investigate the sensory mechanisms used to detect metamorphic cues. Because the aboral pole of the coral planula is the point of attachment to the substratum, we predicted that it is also the point of detection for cues. To determine where sensory cells for cues are localized along the body, individual larvae were transversely cut into oral and aboral portions at various levels along the oral–aboral axis, and exposed to settlement‐inducing substrata. Aboral ends of M. capitata metamorphosed, while oral ends continued to swim. However, in larvae of P. damicornis, ¾ oral ends (i.e., lacking the aboral pole) were also able to metamorphose, indicating that the cells that detect cues may be distributed along the sides of the body. These cells do not correspond to FMRFamide‐immunoreactive cells that are present throughout the body. Cesium ions induced both aboral and oral ends of larvae of both species to settle, suggesting that oral ends have not lost their capacity to metamorphose, despite lacking sensory cells to detect natural cues. To determine whether sensory cells in larvae of P. damicornis are restricted to one side of the body, swimming behavior over substrata was observed in larvae labeled with diI, a red fluorescent lipophilic membrane stain. The larvae were found to rotate around the oral–aboral axis, with their surface against the substratum, not favoring a particular side for detecting cues. While clarifying the regions of the larval body important for settlement and metamorphosis in coral planulae, we conclude that significant differences between coral species may be due to differences in the distribution of sensory structures in relation to different planular sizes.  相似文献   

5.
Predation risk influences foraging decisions and time allocation of prey species, and may result in habitat shifts from potentially dangerous to safer areas. We examined a wild population of western grey kangaroos (Macropus fuliginosus) to test the efficacy of predator faecal odour in influencing time allocated to different behaviours and inducing changes in habitat use. Kangaroos were exposed to fresh faeces of a historical predator, the dingo (Canis lupus dingo), a recently introduced predator, the red fox (Vulpes vulpes), a herbivore (horse, Equus caballus) and an unscented control simultaneously. Kangaroos did not increase vigilance in predator‐scented areas. However, they investigated odour sources by approaching and sniffing; more time was spent investigating fox odour than control odours. Kangaroos then exhibited a clear anti‐predator response to predator odours, modifying their space use by rapidly escaping, then avoiding fox and dingo odour sources. Our results demonstrate that wild western grey kangaroos show behavioural responses to predator faeces, investigating then avoiding these olfactory cues of potential predation risk, rather than increasing general vigilance. This study contributes to our understanding of the impact of introduced mammalian predators on marsupial prey and demonstrates that a native Australian marsupial can recognize and respond to the odour of potential predators, including one that has been recently introduced.  相似文献   

6.
A diversity of fishes release chemical cues upon being attacked by a predator. These cues, commonly termed alarm cues, act as sources of public information warning conspecifics of predation risk. Species which are members of the same prey guild (i.e. syntopic and share predators) often respond to one another's alarm cues. The purpose of this study was to discriminate avoidance responses of fishes to conspecific alarm cues and cues of other prey guild members from responses to unknown damaged fish odours and novel odours. We used underwater video to measure avoidance responses of freshwater littoral species, namely fathead minnows (Pimephales promelas), finescale dace (Chrosomus neogaeus), and brook stickleback (Culaea inconstans), to both injured fish cues and novel non‐fish odours. The cyprinids (minnows and dace) showed significant avoidance of minnow cues over swordtail cues, morpholine, and the control of distilled water and tended to avoid fathead cues over cues of known prey guild members (stickleback). Cyprinids also significantly avoided cues of stickleback over unknown heterospecific cues (swordtail) and tended to avoid stickleback cues over morpholine and the distilled water control. Stickleback significantly avoided fathead minnow extract over the distilled water and tended to avoid stickleback and swordtail over distilled water. We conclude that fishes in their natural environment can show dramatic changes in behaviour upon exposure to alarm cues from conspecifics and prey guild members. These responses do not represent avoidance of cues of any injured fish or any novel odour.  相似文献   

7.
Olfaction is a common sensory mode of communication in much of the Vertebrata, although its use by adult frogs remains poorly studied. Being part of an open signalling system, odour cues can be exploited by 'eavesdropping' predators that hunt by smell, making association with odour a high-risk behaviour for prey. Here, we show that adult great barred frogs (Mixophes fasciolatus) are highly attracted to odour cues of conspecifics and those of sympatric striped marsh frogs (Limnodynastes peronii). This attraction decreased significantly with the addition of odours of a scent-hunting predator, the red-bellied black snake (Pseudechis porphyriacus), indicating that frogs perceived predation risks from associating with frog odours. Male frogs, however, maintained some attraction to unfamiliar conspecific scents even with predator odours present, suggesting that they perceived benefits of odour communication despite the risk. Our results indicate that adult frogs can identify species and individuals from their odours and assess the associated predation risk, revealing a complexity in olfactory communication previously unknown in adult anurans.  相似文献   

8.
Detection and avoidance of predator cues can be costly, so it is important for prey to balance the benefits of gaining food against the costs of avoiding predators. Balancing these factors becomes more complicated when prey are threatened by more than one type of predator. Hence, the ability to recognize species‐specific predator odours and prioritize behaviours according to the level of risk is essential for survival. We investigated how rock rats, Zyzomys spp. modify their foraging behaviour and giving‐up density (GUD) in the presence of an apex predator, the dingo Canis dingo, a mesopredator, the northern quoll Dasyurus hallucatus, a herbivore, the rock wallaby Petrogale brachyotis as a pungency control and water as a procedural control. Both dingoes and quolls consume rock rats, but because quolls can enter small crevices inhabited by rock rats, they pose a greater threat to rock rats than dingoes. Rock rats demonstrated a stronger avoidance to quoll odour than dingo odour, and no avoidance of the pungency control (rock wallaby) and the procedural control (water). GUD values declined significantly over the duration of the study, but did not differ between odour treatments. Our results support the hypothesis that prey vary behaviour according to perceived predator threat, and show stronger responses to potentially more dangerous predators.  相似文献   

9.
Some fish recognize the threat of predatory fish through chemical cues, which may result in variation in diel activity. However, there is little experimental evidence of diel shifts in activity of prey fish in response to the diel activity of a predator. We compared the total prey consumed and the use of cover by common bullies (Gobiomorphus cotidianus), a native benthic feeding eleotrid, when exposed to the odour of an exotic predator, European perch (Perca fluviatilis), over a 12-h period. Our results showed no significant effect of perch odour on feeding activity, but a significant increase in the use of cover at night and a decrease in the use of cover by day. While common bullies may recognize the presence of a predator through chemical cues, dark conditions may inhibit this and other sensory mechanisms, affecting their ability to recognize the proximity of a predator. For example, during the daytime they may rely on visual cues to initiate cover-seeking behavior, but in the dark, vision is impaired giving them less warning of predators, thus potentially making them more vulnerable.  相似文献   

10.
Among microtine rodents, reaction to chemical cues from conspecifics is assumed to reflect social and spatial relationships. Generally, strong attraction of particular odours correlates with non‐aggressive behaviour and high spatial tolerance towards odour donors, whereas weak attraction correlates with greater levels of aggression and spatial segregation. In the present study, we examined whether winter odour preferences of the snow vole Chionomys nivalis, a rock‐dwelling microtine principally found at high‐mountainous regions, differ from that of other vole species, owing to their different social organization during overwintering periods. The social structure of C. nivalis over the winter period is relatively unusual among vole species in that they become nomadic and solitary. In odour choice trials under laboratory conditions, we found that both males and females avoided zones with conspecific odours of both sexes in comparison with unscented control zones or own odours. These results are consistent with the elevated levels of intraspecific aggression and spatial isolation of C. nivalis during overwintering periods. Furthermore, scent‐elicited self‐grooming increased when their own odour was offered against conspecific cues. This, in combination with an active avoidance of conspecific odours, might functionally contribute to minimize direct confrontations between solitary individuals, thereby reducing the risks of aggressive encounters during overwintering periods.  相似文献   

11.
While searching for food, predators may use volatiles associated with their prey, but also with their competitors for prey. This was tested for the case of Zetzellia mali (Ewing) (Acari: Stigmaeidae), an important predator of the hawthorn spider mite, Amphitetranychus viennensis (Zacher) (Acari: Tetranychidae), in black-cherry orchards in Baraghan, Iran. Using a Y-tube olfactometer, the response of this predatory mite was tested to odour from black-cherry leaves with a conspecific female predatory mite, either with or without a female of the hawthorn spider mite when the alternative odour came from black-cherry leaves with the hawthorn spider mite only. Female predators avoided odours from leaves with both a hawthorn spider mite and a conspecific predator, as well as leaves with a conspecific predator only. We discuss whether avoidance emerges in response to cues from the competitor/predator, the herbivore/prey or the herbivore-damaged plant.  相似文献   

12.
Progress in understanding sensory and locomotory systems in Tritonia diomedea has created the potential for the neuroethological study of animal navigation in this species. Our goal is to describe the navigational behaviors to guide further work on how the nervous system integrates information from multiple senses to produce oriented locomotion. Observation of T. diomedea in its habitat has suggested that it uses water flow to navigate relative to prey, predators, and conspecifics. We test these hypotheses in the field by comparing slug orientation in time-lapse videos to flow direction in circumstances with and without prey, predators, or conspecifics upstream. T. diomedea oriented upstream both while crawling and after turning. This trend was strongest before feeding or mating; after feeding or mating, the slugs did not orient significantly to flow. Slugs turned downstream away from an upstream predator but did not react in control situations without an upstream predator. These data support the hypothesis that T. diomedea uses a combination of odors (or some other cue transported downstream) and water flow to navigate relative to prey, predators, and conspecifics. Understanding the context-dependent choice between upstream and downstream crawling in T. diomedea provides an opportunity for further work on the sensory integration underlying navigation behavior.  相似文献   

13.
Predators use a variety of information sources to locate potential prey, and likewise prey animals use numerous sources of information to detect and avoid becoming the meal of a potential predator. In freshwater environments, chemosensory cues often play a crucial role in such predator/prey interactions. The importance of chemosensory information to teleost fish in marine environments is not well understood. Here, we tested whether coral reef fish predators are attracted to damage-released chemical cues from already wounded prey in order to find patches of prey and minimize their own costs of obtaining food. Furthermore, we tested if these chemical cues would convey information about status of the prey. Using y-maze experiments, we found that predatory dottybacks, Pseudochromis fuscus, were more attracted to skin extracts of damselfish, Pomacentrus amboinensis, prey that were in good condition compared to prey in poor body condition. Moreover, in both the laboratory and field, we found that predators could differentiate between skin extracts from prey based on prey size, showing a greater attraction to extracts made from prey that were the appropriate size to consume. This suggests that predators are not attracted to any general substance released from an injured prey fish instead being capable of detecting and distinguishing relatively small differences in the chemical composition of the skin of their prey. These results have implications for understanding predator foraging strategies and highlights that chemical cues play a complex role in predator–prey interactions in marine fish.  相似文献   

14.
The role of pollen odour in resource location by the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), a pollen-feeding insect regarded as a pest of oilseed rape, Brassica napus L., (Brassicaceae) crops, was investigated in a linear track olfactometer. Both male and female beetles were attracted to the odour of whole oilseed rape flowers, indicating that these insects can locate their host plants using floral odours as cues. The attractive odour of flowers was found to emanate from all floral parts tested: the petals/sepals, the anthers, and from pollen itself. Therefore, at least part of the attractive odour of oilseed rape flowers emanates from pollen. Beetles were more attracted to floral samples containing anthers than those without anthers when these odours were directly compared in a choice-test, and this indicates that there were detectable differences between them. Anthers and pollen may therefore release distinctive odours that are quantitatively and/or qualitatively different from the odour of the rest of the flower. These experiments support the hypothesis that pollen-seeking insects use pollen odour cues to locate this food source.  相似文献   

15.
Abstract. The role of pollen odour cues in the foraging behaviour of honey bees (Apis mellifera L.) is poorly understood. Using classical conditioning of the proboscis extension response, in which bees learn to associate an odour with a sucrose reward, the present study tests whether odours of bee-collected pollen from the hive environment or odours of fresh pollen on the anthers of flowers could be used in pollen foraging. Honey bees efficiently learn odours from field-bean (Vicia faba) bee-collected pollen and oilseed-rape (Brassica napus) bee-collected pollen, hand-collected pollen, anthers and whole flowers, demonstrating that honey bees can learn pollen odours associatively in biologically realistic concentrations. Honey bees learn pollen odours of oilseed rape better than field bean and, although they generalize these two odours, they easily distinguish between them in discrimination tests, suggesting that pollen odours may be used in species recognition/discrimination. There is little evidence that honey bees can recognize whole flowers based on previous experience of bee-collected pollen odour. However, they generalize the odours of oilseed-rape anthers and whole flowers, suggesting that anther pollen in situ may play a more prominent role than bee-collected pollen in foraging behaviour.  相似文献   

16.
Predator-induced diapause in Daphnia magna may require two chemical cues   总被引:4,自引:0,他引:4  
The production of diapausing eggs by Daphnia magna stimulated by fish exudates can be explained as an anti-predator defence ensuring genome protection in periods of high risk from fish predation. The combined effects on the induction of D. magna diapause of an “alarm” chemical originating from injured conspecific prey and fish kairomones were tested. The results of the experiment showed that the cues when present together promote both the production of ephippial eggs and male formation, indicating their role in the synchronization of the entire mode of Daphnia sexual reproduction. Ephippial eggs were only produced in the presence of both fish kairomone and conspecific alarm chemicals, while male offspring occurred in the treatments where both, one or none of the cues were present. However, production of males was the highest when both cues were provided. D. magna responded similarly to the tested cues whether or not the hypothetical alarm substance associated with predator odour came from Daphnia specimens actually eaten by fish or from crushed conspecific individuals. However, chemicals from crushed chironomid larvae combined with fish kairomones did not induce a similar response in D. magna. The relative advantage of utilization of alarm cues or predator kairomones in the induction of defence responses in prey organisms is discussed. Received: 8 June 1998 / Accepted: 11 January 1999  相似文献   

17.
Specialist predators may respond strongly to sensory cues from preferred prey, but responses by generalist predators, although predicted to be less specific, are poorly known. Among squamate reptiles, diet and strength of response to chemical prey cues covary geographically in snakes that are specialist predators. There have been no previous studies of correspondence between diet and chemosensory response in lizards that are prey generalists. Actively foraging lizards discriminate between prey chemicals and control substances. It has been speculated that differential responses among prey species are unlikely in typical species that are dietary generalists. We examined this relationship in Podarcis lilfordi, an omnivorous lacertid that consumes a wide variety of animal prey. In experiments in which chemical stimuli were presented on cotton swabs, lizards responded more strongly to chemicals from a broad spectrum of prey types than to deionized water, an odorless control. These findings plus previous data showing that P. lilfordi is capable of prey chemical discrimination suggest that P. lilfordi can identify a wide range of potential prey using chemical cues. However, there was no evidence of differential response to stimuli among prey species, even in comparisons of prey included in the natural diet and potential prey not in the diet. The results, although limited to a single species, are consistent with the hypothesis that lizard species that are prey generalists do not exhibit the differential response strengths to chemical prey cues observed in snakes that have more specialized diets. Received in revised form: 17 July 2001 Electronic Publication  相似文献   

18.
1. Olfactory predator search processes differ fundamentally to those based on vision, particularly when odour cues are deposited rather than airborne or emanating from a point source. When searching for visually cryptic prey that may have moved some distance from a deposited odour cue, cue context and spatial variability are the most likely sources of information about prey location available to an olfactory predator. 2. We tested whether the house mouse (Mus domesticus), a model olfactory predator, would use cue context and spatial variability when searching for buried food items; specifically, we tested the effect of varying cue patchiness, odour strength, and cue-prey association on mouse foraging success. 3. Within mouse- and predator-proof enclosures, we created grids of 100 sand-filled Petri dishes and buried peanut pieces in a set number of these patches to represent visually cryptic 'prey'. By adding peanut oil to selected dishes, we varied the spatial distribution of prey odour relative to the distribution of prey patches in each grid, to reflect different levels of cue patchiness (Experiment 1), odour strength (Experiment 2) and cue-prey association (Experiment 3). We measured the overnight foraging success of individual mice (percentage of searched patches containing prey), as well as their foraging activity (percentage of patches searched), and prey survival (percentage of unsearched prey patches). 4. Mouse foraging success was highest where odour cues were patchy rather than uniform (Experiment 1), and where cues were tightly associated with prey location, rather than randomly or uniformly distributed (Experiment 3). However, when cues at prey patches were ten times stronger than a uniformly distributed weak background odour, mice did not improve their foraging success over that experienced when cues were of uniform strength and distribution (Experiment 2). 5. These results suggest that spatial variability and cue context are important means by which olfactory predators can use deposited odour cues to locate visually cryptic prey. They also indicate that chemical crypsis can disrupt these search processes as effectively as background matching in visually based predator-prey systems.  相似文献   

19.
Summary We have identified 13 pairs of neurons in the pedal ganglia of the marine nudibranch slug Tritonia diomedea that responded tonically and/or phasically to water-flow directed at the rhinophore sheaths and oral veil tips. Most of the neurons responded equally to inputs from either side of the body, but 6 pairs responded with greater intensity to ipsilateral water-flow stimuli. When stimulated intracellularly in a semi-intact, whole-animal preparation, 4 of these 6 pairs of neurons caused ipsilateral movements that may turn the animal towards that side. These observations suggest a role for these current-sensitive neurons in the previously described orientation to water-currents in Tritonia diomedea.  相似文献   

20.
In lizards and snakes, foraging mode (active vs. ambush) is highly correlated with the ability to detect prey chemical cues, and the way in which such cues are utilized. Ambush-foraging lizards tend not to recognize prey scent, whereas active foragers do. Prey scent often elicits strikes in actively-foraging snakes, while ambushers use it to select profitable foraging sites. We tested the influence of foraging ecology on the evolution of squamate chemoreception by gauging the response of Burton's legless lizard ( Lialis burtonis Gray, Pygopodidae) to prey chemical cues. Lialis burtonis is the ecological equivalent of an ambush-foraging snake, feeding at infrequent intervals on relatively large prey, which are swallowed whole. Captive L. burtonis did not respond to prey odour in any manner: prey chemical cues did not elicit elevated tongue-flick rates or feeding strikes, nor were they utilized in the selection of ambush sites. Like other ambushing lizards, L. burtonis appears to be a visually oriented predator. In contrast, an active forager in the same family, the common scaly-foot ( Pygopus lepidopodus ), did tongue-flick in response to odours of its preferred prey. These results extend the correlation between lizard foraging mode and chemosensory abilities to a heretofore-unstudied family, the Pygopodidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号