首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lumbar interbody fusion is a common procedure for treating lower back pain related to degenerative disc diseases. The Coflex-F is a recently developed interspinous spacer, the makers of which claim that it can provide stabilisation similar to pedicle screw fixation. Therefore, this study compares the biomechanical behaviour of the Coflex-F device and pedicle screw fixation with transforaminal lumbar interbody fusion (TLIF) or anterior lumbar interbody fusion (ALIF) surgeries by using finite element analysis. The results show that the Coflex-F device combined with ALIF surgery can provide stability similar to the pedicle screw fixation combined with TLIF or ALIF surgery. Also, the posterior instrumentations (Coflex-F and pedicle screw fixation) combined with TLIF surgery had lower stability than when combined with ALIF surgery.  相似文献   

2.
Finite element models are frequently used to study lumbar spinal biomechanics. Deterministic models are used to reflect a certain configuration, including the means of geometrical and material properties, while probabilistic models account for the inherent variability in the population. Because model parameters are generally uncertain, their predictive power is frequently questioned. In the present study, we determined the sensitivities of spinal forces and motions to material parameters of intervertebral discs, vertebrae, and ligaments and to lumbar morphology. We performed 1200 model simulations using a generic model of the human lumbar spine loaded under pure moments. Coefficients of determination and of variation were determined for all parameter and response combinations. Material properties of the vertebrae displayed the least impact on results, whereas those of the discs and morphology impacted most. The most affected results were the axial compression forces in the vertebral body and in several ligaments during flexion and the facet-joint forces during extension. Intervertebral rotations were considerably affected only when several parameters were varied simultaneously. Results can be used to decide which model parameters require careful consideration in deterministic models and which parameters might be omitted in probabilistic studies. Findings allow quantitative estimation of a model׳s precision.  相似文献   

3.
Abstract

The motion of the costovertebral joint (CVJ) is governed by the material properties and its morphology. The goal of this numerical study was to identify the material and morphology parameters with the greatest influence on the motion of the CVJ. A fully parametric finite element model of the anatomy and material properties of the CVJ was developed. The impact of five morphology and thirteen material parameters was investigated and compared to in vitro data. The motion was influenced in particular by the rotational stiffness of the articulatio capitis costae and the lateral position of the fovea costalis transveralis.  相似文献   

4.
Novel conical beam CT-scanners offer high resolution imaging of knee structures with i.a. contrast media, even under weight bearing. With this new technology, we aimed to determine cartilage strains and meniscal movement in a human knee at 0, 1, 5, and 30 min of standing and compare them to the subject-specific 3D finite element (FE) model. The FE model of the volunteer?s knee, based on the geometry obtained from magnetic resonance images, was created to simulate the creep. The effects of collagen fibril network stiffness, nonfibrillar matrix modulus, permeability and fluid flow boundary conditions on the creep response in cartilage were investigated. In the experiment, 80% of the maximum strain in cartilage developed immediately, after which the cartilage continued to deform slowly until the 30 min time point. Cartilage strains and meniscus movement obtained from the FE model matched adequately with the experimentally measured values. Reducing the fibril network stiffness increased the mean strains substantially, while the creep rate was primarily influenced by an increase in the nonfibrillar matrix modulus. Changing the initial permeability and preventing fluid flow through noncontacting surfaces had a negligible effect on cartilage strains. The present results improve understanding of the mechanisms controlling articular cartilage strains and meniscal movements in a knee joint under physiological static loading. Ultimately a validated model could be used as a noninvasive diagnostic tool to locate cartilage areas at risk for degeneration.  相似文献   

5.
6.

Background  

Research has indicated that a number of different factors affect whether an animal receives treatment or not when diseased. The aim of this paper was to evaluate if herd or individual animal characteristics influence whether cattle receives veterinary treatment for disease, and thereby also introduce misclassification in the disease recording system.  相似文献   

7.
The aim of this study was to assess stress/strain of different implant modeling simplifications by 3D-FEA. Three variation of external hexagon implant (Ø3.75?×?10 mm) supporting one molar crown were simulated: A (no threads); B (slightly threads simplification); C (original design). 200 N (axial) and 100 N (oblique) were applied. Cortical bone was evaluated by maximum principal stress and microstrain qualitatively and quantitatively (ANOVA and Tukey post hoc (p < 0.05)). Higher stress levels (p < 0.05) were observed in model A. Models B and C presented similar stress transmission. It was possible to conclude that slightly simplification should be used for studies evaluating stress transferring for bone tissue.  相似文献   

8.
Intervertebral disc degeneration is one major source of low back pain, which because of its complex multifactorial nature renders the treatment challenging and thus necessitates extensive research. Experimental animal models have proven valuable in improving our understanding of degenerative processes and potentially promising therapies. Currently, the sheep is the most frequently used large animal in vivo model in intervertebral disc research. However, despite its undoubted value for investigations of the complex biological and cellular aspects, to date, it is unclear whether the sheep is also suited to study the mechanical aspects of disc degeneration in humans.A parametric finite element (FE) model of the L4–5 spinal motion segment was developed. Using this model, the geometry and the material properties of both the human and the ovine spinal segment as well as different appearances of disc degeneration can be depicted. Under pure and combined loads, it was investigated whether degenerative changes to both the human and the ovine model equivalent caused the same mechanical response.Different patterns of degeneration resulted in large variations in the ranges of motion, intradiscal pressure, ligament and facet loads. In the human, but not in the ovine model, all these results differed significantly between different degrees of degeneration.This FE model study highlighted possible differences in the mechanical response to disc degeneration between human and ovine intervertebral discs and indicates the necessity of further, more detailed, investigations.  相似文献   

9.
The goal of this study was to quantify the micromechanics of the cement–bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement–bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement–bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties.  相似文献   

10.
In almost all finite element (FE) studies in dentistry, virtual forces are applied directly to dentures. The purpose of this study was to develop a FE model with non-linear contact simulation using an antagonist as force transmitter and to compare this with a similar model that uses direct force transmission. Furthermore, five contact situations were created in order to examine their influence on the peri-implant bone stresses, which are relevant to the survival rate of implants. It was found that the peri-implant bone stresses were strongly influenced by the kind of force transmission and contact number.  相似文献   

11.
Our survey of current practice among UK orthopaedic surgeons shows wide variations in fixation techniques. The aim of this study, is to investigate the effect of drilling different configurations of anchorage holes in the acetabulum on implant stability. To avoid variables that could incur during in vitro testing, we used commercially available COSMOS finite element analysis package to investigate the stress distributions, deformations, and strains on the cement mantle when drilling three large anchorage holes and six smaller ones, with straight and rounded cement pegs. The results, which are in line with our in vitro studies on simulated reconstructed acetabulae, indicate better stability of the acetabular component when three larger holes than six smaller holes are drilled and when the necks of the anchorage holes are rounded. The longevity of total hip replacements could be improved by drilling three large anchorage holes, rather than many smaller ones, as initially proposed by Charnley.  相似文献   

12.

Background

Biomechanical factors influence stress in the aortic wall. The aim of this study was to assess how the diameter and shape of the vessel, blood pressure and longitudinal systolic aortic stretching (SAS) caused by the contraction of the myocardium influence stress in the aortic wall.

Methods

Three computational models of the non-dilated aorta and aneurysms of the ascending aorta and aortic root were created. Then, finite elements analyses were carried out. The models were subjected to blood pressure (120 mmHg and 160 mmHg) and longitudinal systolic aortic stretching (0 mm, 5 mm, 10 mm and 15 mm). The influence of wall elasticity was examined too.

Results

Blood pressure had a smaller impact on the stress than the SAS. An increase in blood pressure from 120 mmHg to 160 mmHg increased the peak wall stress (PWS) on average by 0.1 MPa in all models. A 5 mm SAS caused a 0.1–0.2 MPa increase in PWS in all the models. The increase in PWS caused by a 10 mm and 15 mm SAS was 0.2 MPa and 0.4 MPa in the non-dilated aorta, 0.2–0.3 MPa and 0.3–0.5 MPa in the aneurysm of the ascending aorta, and 0.1–0.2 MPa and 0.2–0.3 MPa in the aortic root aneurysm model, respectively. The loss of elasticity of the aneurysmal wall resulted in an increase of PWS by 0.1–0.2 MPa.

Conclusions

Aortic geometry, wall stiffness, blood pressure and SAS have an impact on PWS. However, SAS had the biggest impact on wall stress. The results of this study may be useful in future patient-specific computational models used to assess the risk of aortic complications.
  相似文献   

13.
The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2–L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix compressive/shear stresses and anulus fibers strain. The mechanical responses with respect to the two most-relevant variables were then regressed linearly using the response surface quadratic model. Axial force and sagittal rotation were identified as the most-relevant variables for mechanical responses. The procedure developed can be used to find the critical loading for finite element models with multi input variables. The derived meta-models can be used to predict the risk associated with various loading parameters and in setting safer load limits.  相似文献   

14.
Understanding load-sharing in the spine during in-vivo conditions is critical for better spinal implant design and testing. Previous studies of load-sharing that considered actual spinal geometry applied compressive follower load, with or without moment, to simulate muscle forces. Other studies used musculoskeletal models, which include muscle forces, but model the discs by simple beams or spherical joints and ignore the articular facet joints.This study investigated load-sharing in neutral standing and flexed postures using a detailed Finite Element (FE) model of the ligamentous lumbosacral spine, where muscle forces, gravity loads and intra-abdominal pressure, as predicted by a musculoskeletal model of the upper body, are input into the FE model. Flexion was simulated by applying vertebral rotations following spine rhythm measured in a previous in-vivo study, to the musculoskeletal model. The FE model predicted intradiscal pressure (IDP), strains in the annular fibers, contact forces in the facet joints, and forces in the ligaments. The disc forces and moments were determined using equilibrium equations, which considered the applied loads, including muscle forces and IDP, as well as forces in the ligaments and facet joints predicted by the FE model. Load-sharing was calculated as the portion of the total spinal load carried along the spine by each individual spinal structure. The results revealed that spinal loads which increased substantially from the upright to the flexed posture were mainly supported by the discs in the upright posture, whereas the ligaments’ contribution in resisting shear, compression, and moment was more significant in the flexed posture.  相似文献   

15.

Biological structures exhibiting electric potential fluctuations such as neuron and neural structures with complex geometries are modelled using an electrodiffusion or Poisson Nernst–Planck system of equations. These structures typically depend upon several parameters displaying a large degree of variation or that cannot be precisely inferred experimentally. It is crucial to understand how the mathematical model (and resulting simulations) depend on specific values of these parameters. Here we develop a rigorous approach based on the sensitivity equation for the electrodiffusion model. To illustrate the proposed methodology, we investigate the sensitivity of the electrical response of a node of Ranvier with respect to ionic diffusion coefficients and the membrane dielectric permittivity.

  相似文献   

16.
17.
Lumbar interbody fusion cages are commonly used to treat painful spinal degeneration and instability by achieving bony fusion. Many different cage designs exist, however the effect of cage morphology and material properties on the fusion process remains largely unknown. This finite element model study aims to investigate the influence of different cage designs on bone fusion using two mechano-regulation algorithms of tissue formation. It could be observed that different cages play a distinct key role in the mechanical conditions within the fusion region and therefore regulate the time course of the fusion process.  相似文献   

18.
Acetabular fracture presents a challenging situation to trauma surgeons today due to its complexity. Finite element (FE) models can be of great help as they can improve the surgical planning and post surgery patient management for those with acetabular fractures. We have developed a non-linear finite element model of the pelvis and validated its fracture prediction capability with synthetic polyurethane pelves. A mechanical experiment was performed with the synthetic bones and fracture loads and patterns were observed for two different loading cases. Fracture loads predicted by our FE model were within one standard deviation of the experimental fracture loads for both loading cases. The incipient fracture pattern predicted by the model also resembled the actual pattern from the experiment. Although it is not a complete validation with human cadaver bones, the good agreement between model predictions and experimental results indicate the validity of our approach in using non-linear FE formulation along with contact conditions in predicting bone fractures.  相似文献   

19.
G. Rambold  R. Agerer 《Mycorrhiza》1997,7(2):113-116
 A considerable amount of data has been published on morphological and anatomical characteristics of ectomycorrhizae but these are dispersed in several, sometimes not easily available, journals. The few keys that exist are mostly based upon host tree genera. No comprehensive determination tools for non-experts are available. An information system for specific characters of ectomycorrhizae and an interactive key are now provided by DEEMY on CD-ROM. Accepted: 6 May 1997  相似文献   

20.
A computer simulation model was developed to compare the result of cervical traction therapy in inclined and sitting traction positions. The behavior of the model was shown to match with the intervertebral changes in the upper and lower spine from the data of a radiographic experiment. Both the results of the experiment and the simulation also showed that in the inclined position, the amount of posterior separations in the upper cervical spine remains constant regardless of traction angle, while the posterior separations at lower cervical spine increases along with traction angles. Using the simulation model, parametric studies were conducted to investigate the intervertebral space changes in response to different traction angles in the inclined and sitting positions. When using the sitting position, the subject’s hip joint stiffness was shown to cause larger variations in the intervertebral space than in the inclined position. In addition, variations in the tension/compression stiffness was shown to cause the largest changes in the resulting separations in both positions but the variations in anterior space changes were larger in the sitting position. Our study suggests that the inclined position is less sensitive to variations in the subject's body parameters and is able to provide a more reliable and predictable traction result than the sitting position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号