首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Type 1 diabetes is characterized by a lack of insulin production by the pancreas, causing high blood glucose concentrations and requiring external insulin infusion to regulate blood glucose. Continuous glucose sensors can be coupled with continuous insulin infusion pumps to create a closed-loop artificial pancreas. A novel procedure of “human-friendly” identification testing using multisine inputs is developed to estimate suitable models for use in an artificial pancreas. A constrained model predictive control (MPC) strategy is developed to reduce risks of hypo- and hyperglycemia (low and high blood glucose concentration). Meal detection and meal size estimation algorithms are developed to improve meal glucose disturbance rejection when incoming meals are not announced. Closed-loop performance is evaluated through simulation studies of a type 1 diabetic individual, illustrating the ability of the MPC-based artificial pancreas control strategy to handle announced and unannounced meal disturbances.  相似文献   

2.
Type 1 diabetes is an autoimmune condition characterised by a pancreatic insulin secretion deficit, resulting in high blood glucose concentrations, which can lead to micro- and macrovascular complications. Type 1 diabetes also leads to impaired glucagon production by the pancreatic α-cells, which acts as a counter-regulatory hormone to insulin. A closed-loop system for automatic insulin and glucagon delivery, also referred to as an artificial pancreas, has the potential to reduce the self-management burden of type 1 diabetes and reduce the risk of hypo- and hyperglycemia. To date, bihormonal closed-loop systems for glucagon and insulin delivery have been based on two independent controllers. However, in physiology, the secretion of insulin and glucagon in the body is closely interconnected by paracrine and endocrine associations. In this work, we present a novel biologically-inspired glucose control strategy that accounts for such coordination. An in silico study using an FDA-accepted type 1 simulator was performed to evaluate the proposed coordinated control strategy compared to its non-coordinated counterpart, as well as an insulin-only version of the controller. The proposed coordinated strategy achieves a reduction of hyperglycemia without increasing hypoglycemia, when compared to its non-coordinated counterpart.  相似文献   

3.
This paper presents a developed and validated dynamic simulation model of type 1 diabetes, that simulates the progression of the disease and the two term controller that is responsible for the insulin released to stabilize the glucose level. The modeling and simulation of type 1 diabetes mellitus is based on an artificial neural network approach. The methodology builds upon an existing rich database on the progression of type 1 diabetes for a group of diabetic patients. The model was found to perform well at estimating the next glucose level over time without control. A neural controller that mimics the pancreas secretion of insulin into the body was also developed. This controller is of the two term type: one stage is responsible for short-term and the other for mid-term insulin delivery. It was found that the controller designed predicts an adequate amount of insulin that should be delivered into the body to obtain a normalization of the elevated glucose level. This helps to achieve the main objective of insulin therapy: to obtain an accurate estimate of the amount of insulin to be delivered in order to compensate for the increase in glucose concentration.  相似文献   

4.
Eberle C  Ament C 《Bio Systems》2011,103(1):67-72
Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem.  相似文献   

5.
To investigate whether correction of fasting hyperglycemia per se improves the insulin secretion in type 2 diabetic subjects, plasma insulin response to 75 g oral glucose load has been studied after acute and chronic normalization of fasting plasma glucose levels in 7 overt type 2 diabetic subjects. For the acute normalization of elevated fasting plasma glucose levels, an artificial endocrine pancreas was employed. Although fasting plasma glucose concentrations were normalized before the oral glucose challenge, insulin response to oral glucose was not improved compared to those without normalization of fasting plasma glucose levels. After 1-3 month control of hyperglycemia, the insulin response to glucose in the subjects was significantly improved compared to those without treatments. Results indicate that chronic metabolic control is essential for the improvement of insulin response to glucose in type 2 diabetic subjects, and also suggest that the impaired insulin secretion in type 2 diabetes is not due to hyperglycemia per se, but due to the metabolic derangements which lead to chronic hyperglycemia.  相似文献   

6.
Pancreatic β-cell dysfunction is a diagnostic criterion of Type 2 diabetes and includes defects in glucose transport and insulin secretion. In healthy individuals, β-cells maintain plasma glucose concentrations within a narrow range in concert with insulin action among multiple tissues. Postprandial elevations in blood glucose facilitate glucose uptake into β-cells by diffusion through glucose transporters residing at the plasma membrane. Glucose transport is essential for glycolysis and glucose-stimulated insulin secretion. In human Type 2 diabetes and in the mouse model of obesity-associated diabetes, a marked deficiency of β-cell glucose transporters and glucose uptake occurs with the loss of glucose-stimulated insulin secretion. Recent studies have shown that the preservation of glucose transport in β-cells maintains normal insulin secretion and blocks the development of obesity-associated diabetes. To further elucidate the underlying mechanisms, we have constructed a computational model of human β-cell glucose transport in health and in Type 2 diabetes, and present a systems analysis based on experimental results from human and animal studies. Our findings identify a metabolic threshold or “tipping point” whereby diminished glucose transport across the plasma membrane of β-cells limits intracellular glucose-6-phosphate production by glucokinase. This metabolic threshold is crossed in Type 2 diabetes and results in β-cell dysfunction including the loss of glucose stimulated insulin secretion. Our model further discriminates among molecular control points in this pathway wherein maximal therapeutic intervention is achieved.  相似文献   

7.
8.
Psammomys obesus (the Israeli sand rat) has been well studied as an animal model of Type 2 diabetes. However, obesity phenotypes in these animals have not been fully characterized. We analyzed phenotypic data including body weight, percentage body fat, blood glucose and plasma insulin concentration for over 600 animals from the Psammomys obesus colony at Deakin University to investigate the relationships between body fat, body weight and Type 2 diabetes using regression analysis and general linear modelling. The body weight distribution in Psammomys obesus approximates a normal distribution and closely resembles that observed in human populations. Animals above the 75th percentile for body weight had increased body fat content and a greater risk of developing diabetes. Increased visceral fat content .was also associated with elevated blood glucose and plasma insulin concentrations in these animals. A familial effect was also demonstrated in Psammomys obesus, and accounted for 51% of the variation in body weight, and 23–26% of the variation in blood glucose and plasma insulin concentrations in these animals. Psammomys obesus represents an excellent animal model of.obesity and Type 2 diabetes that exhibits a phenotypic pattern closely resembling that observed in human population studies. The obesity described in these animals was familial in nature and was significantly associated with Type 2 diabetes.  相似文献   

9.
According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat.  相似文献   

10.
The effects of a maternal intravenous glucose load on the fetal plasma levels of glucose and insulin have been studied in 11 patients before the onset of labour. Within five minutes the fetal plasma glucose concentration rose significantly, indicating a rapid transfer of glucose across the placenta. Following this, the rate of fall in fetal plasma glucose closely reflected that in the mother.Serial fetal insulin estimations carried out in 8 of the 11 subjects following maternal glucose showed an early rise in fetal insulin in four and a delayed rise in one; in the remaining three there was no definite change.It is concluded that the blood glucose level of the fetus is controlled by that of the mother, but that the fetal pancreas at term may respond to hyperglycaemia by the secretion of insulin.  相似文献   

11.
A method for optimal continuous insulin therapy for diabetes patients has been sought since the early 1970s. Although technical and medical advances have been made, a fully automated artificial pancreas to replace the functions of the natural organ is still a research aim. This review compares recent control algorithms for type 1 diabetic patients which automatically connect continuous glucose monitoring and insulin injection, without patient intervention. Black-box model and gray-box model based control strategies are described and their performances are evaluated, with a focus on their feasibility of implementation in a real-life situation. In conclusion, a satisfactory control strategy has not yet been proposed, mainly because most control algorithms rely on continuous blood glucose measurement which is not yet available. Modeling the effect of glucose ingestion as an external disturbance on the time evolution of blood glucose concentration, is now the norm for the control community. In contrast, the effects of physical activity on the metabolic system is not yet fully understood and remain an open issue. Moreover, clinical studies on evaluation of control performance are scarce. Therefore, research on blood glucose control needs to concentrate on advanced patient modeling, control optimization and control performance evaluation under realistic patient-oriented conditions.  相似文献   

12.
13.
Patients with type 1 diabetes require insulin therapy to maintain blood glucose levels within safe ranges since their pancreas is unable to complete its function. The development of a closed-loop artificial pancreas capable of maintaining normoglycemia during daily life will dramatically improve the quality of life for insulin-dependent diabetic patients. In this work, a closed-loop control strategy for blood glucose level regulation in type 1 diabetic patients is presented. A robust controller is designed using a combination of internal model and sliding mode control techniques. Also, the controller is provided with a feedforward loop to improve meal compensation. A simulation environment designed for testing the artificial pancreas control algorithms has been used to evaluate the controller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and meal estimation errors.  相似文献   

14.
The central objective of diabetes research and management is to restore the deficient secretion of insulin, thereby restoring a state of euglycemia and minimizing short- and long-term risks associated with poor glucose control. The development of the artificial pancreas seeks to imitate the action of the pancreatic beta cell by employing closed-loop control to respond to glycemic excursions by appropriately infusing appropriate amounts of insulin. This article examines progress towards implementing an artificial pancreas in the context of the pancreatic islet as the ideal model for controlling blood glucose. Physiologic insulin secretion will form our foundation for considering the technical design elements relevant to electromechanically imitating the beta cell. The most recent clinical trials using closed-loop control are reviewed and this modality is compared to other curative approaches including islet cell transplantation and preservation. Finally, the potential of the artificial pancreas as a method to adequately reestablish euglycemia is considered.  相似文献   

15.
The pathophysiology of TallyHo mouse, a recently established animal model for type 2 diabetes mellitus, was analyzed at prediabetic state to examine the inherent defects which contribute to the development of diabetes. At 4 weeks of age, the TallyHo mice already revealed glucose intolerance while their peripheral tissues exhibited normal insulin sensitivity. On the other hand, decreased plasma insulin concentration was observed with little differences in pancreatic insulin contents, indicating the impaired insulin secretion. Such defect, however, was not found in the isolated islets, which suggests a role of endocrine factor in impaired insulin secretion of TallyHo mice. Treatment of leptin inhibited the glucose-stimulated insulin secretion from the isolated islets of TallyHo mice, while in vivo administration of anti-leptin antibody lowered plasma glucose concentration with increased insulin level in TallyHo mice. Expression of glucokinase mRNA was decreased both in whole pancreas and leptin treated islets of TallyHo mice compared with whole pancreas in C57BL/6 mice and untreated islets of TallyHo mice, respectively. These results suggest that elevated plasma leptin can, through the inhibition of insulin secretion, induce glucose intolerance in TallyHo mice.  相似文献   

16.
《Organogenesis》2013,9(1):32-41
The central objective of diabetes research and management is to restore the deficient secretion of insulin, thereby restoring a state of euglycemia and minimizing short- and long-term risks associated with poor glucose control. The development of the artificial pancreas seeks to imitate the action of the pancreatic beta cell by employing closed-loop control to respond to glycemic excursions by appropriately infusing appropriate amounts of insulin. This article examines progress towards implementing an artificial pancreas in the context of the pancreatic islet as the ideal model for controlling blood glucose. Physiologic insulin secretion will form our foundation for considering the technical design elements relevant to electromechanically imitating the beta cell. The most recent clinical trials using closed-loop control are reviewed and this modality is compared to other curative approaches including islet cell transplantation and preservation. Finally, the potential of the artificial pancreas as a method to adequately reestablish euglycemia is considered.  相似文献   

17.
Mature male CBA/Ca mice develop a spontaneous mild diabetes-obesity syndrome which is characterized by hyperglycaemia, hyperinsulinaemia and insulin resistance, and resembles human Type II diabetes mellitus. Immunocytochemical staining of pancreas sections for insulin showed that the pancreas from mature obese mice possessed significantly enlarged islets compared to those from age-matched control (lean) mice. The pancreatic insulin content was significantly greater in 24-week-old obese mice (1.78 ± 0.14mU/mg) compared with lean controls (0.92 ± 0.09 mU/mg). This increase was still apparent at 48 weeks of age. We conclude that, unlike most other rodent models of Type II diabetes, there is no chronic degeneration of beta cells in these mice, so that circulating insulin levels remain high throughout their life. We suggest, therefore, that the male CBA/Ca mouse represents a valuable model for investigating maturity onset diabetes.  相似文献   

18.
Glucagon dysregulation is an essential component in the pathophysiology of type 2 diabetes. Studies in vitro and in animal models have shown that zinc co-secreted with insulin suppresses glucagon secretion. Zinc supplementation improves blood glucose control in patients with type 2 diabetes, although there is little information about how zinc supplementation may affect glucagon secretion. The objective of this study was to evaluate the effect of 1-year zinc supplementation on fasting plasma glucagon concentration and in response to intravenous glucose and insulin infusion in patients with type 2 diabetes. A cross-sectional study was performed after 1-year of intervention with 30 mg/day zinc supplementation or a placebo on 28 patients with type 2 diabetes. Demographic, anthropometric, and biochemical parameters were determined. Fasting plasma glucagon and in response to intravenous glucose and insulin infusion were evaluated. Patients of both placebo and supplemented groups presented a well control of diabetes, with mean values of fasting blood glucose and glycated hemoglobin within the therapeutic goals established by ADA. No significant differences were observed in plasma glucagon concentration, glucagon/glucose ratio or glucagon/insulin ratio fasting, after glucose or after insulin infusions between placebo and supplemented groups. No significant effects of glucose or insulin infusions were observed on plasma glucagon concentration. One-year zinc supplementation did not affect fasting plasma glucagon nor response to intravenous glucose or insulin infusion in well-controlled type 2 diabetes patients with an adequate zinc status.  相似文献   

19.
We examined the effect of soluble corn bran hemicellulose (CBH, 10g/day) on glucose control and serum insulin in three groups: patients with impaired glucose tolerance (IGT) with (20 subjects) or without (8 subjects) obesity and with healthy non-obese controls (10 subjects). Long-term supplementation (6 months) with CBH decreased the post oGTT curve for patients with impaired mild Type II diabetes, but not that for the controls. Hemoglobin A1c decreased significantly during CBH supplementation in the obese patients, while the fasting glucose level decreased in all three groups, although not significantly. A decreased serum insulin response by oGTT was found in those patients with IGT.

The improved oGTT result was associated with improved insulin release and perhaps with peripheral insulin sensitivity. These findings suggest that CBH at a low dose might contribute to glycemic control and would play a useful role in treating Type II diabetes patients.  相似文献   

20.
成纤维细胞生长因子(FGF)-21是FGF家族的成员之一.作为近年发现的一种新的糖代谢调节因子,大量研究表明,FGF-21是一种不依赖胰岛素,能够独立降糖的2型糖尿病治疗潜力型药物.但是,能否应用于1型糖尿病的治疗,国内外目前尚无报道.通过改良传统造模方法,诱导小鼠缓慢产生糖耐量异常,研究FGF-21对此类模型的糖代谢影响及肝糖代谢机制.通过检测FGF-21短期注射和长期注射后模型动物血糖的变化,研究FGF-21在模型动物上对血糖的调控效果.采用实时定量PCR检测FGF-21对模型动物肝脏中葡萄糖转运蛋白(GLUT)1、4 mRNA的表达影响.利用蒽酮法检测模型动物肝脏中糖原合成量.实验结果显示,FGF-21能够调节1型糖尿病动物的血糖水平,并呈剂量依赖性.同时,首次在1型糖尿病动物模型上证实了低剂量FGF-21(0.125 mg/kg)与胰岛素的协同作用效果优于相同剂量FGF-21和胰岛素单独注射的效果.治疗结果表明,FGF-21能够维持1型糖尿病动物模型血糖在正常范围,效果优于胰岛素.实时定量PCR结果发现,与胰岛素上调GLUT4 mRNA表达量不同的是,FGF-21作用动物模型8周后,GLUT1 mRNA表达量显著提高,长期的FGF-21与胰岛素协同注射使GLUT1、4 mRNA表达量同时显著提高.长期FGF-21与胰岛素协同注射组和高剂量FGF-21注射均可显著提高模型动物肝糖原的合成.结果表明,FGF-21促进动物模型糖代谢机制与增加GLUT1表达、增加糖原合成作用有关.为临床应用FGF-21治疗1型糖尿病,增加胰岛素敏感性提供了理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号