首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Computational biomechanics for human body modeling has generally been categorized into two separated domains: finite element analysis and multibody dynamics. Combining the advantages of both domains is necessary when tissue stress and physical body motion are both of interest. However, the method for this topic is still in exploration. The aim of this study is to implement unique controlling strategies in finite element model for simultaneously simulating musculoskeletal body dynamics and in vivo stress inside human tissues. A finite element lower limb model with 3D active muscles was selected for the implementation of controlling strategies, which was further validated against in-vivo human motion experiments. A unique feedback control strategy that couples together a basic Proportion-Integration-Differentiation (PID) controller and generic active signals from Computed Muscle Control (CMC) method of the musculoskeletal model or normalized EMG singles was proposed and applied in the present model. The results show that the new proposed controlling strategy show a good correlation with experimental test data of the normal gait considering joint kinematics, while stress distribution of local lower limb tissue can be also detected in real-time with lower limb motion. In summary, the present work is the first step for the application of active controlling strategy in the finite element model for concurrent simulation of both body dynamics and tissue stress. In the future, the present method can be further developed to apply it in various fields for human biomechanical analysis to monitor local stress and strain distribution by simultaneously simulating human locomotion.  相似文献   

2.
3.
Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.  相似文献   

4.
5.
Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP.  相似文献   

6.
Background: There is lack of further observations on the microstructure and material property of callus during bone defect healing and the relationships between callus properties and the mechanical strength. Methods: Femur bone defect model was created in rabbits and harvested CT data to reconstruct finite element models at 1 and 2 months. Three types of assumed finite element models were compared to study the callus properties, which assumed the material elastic property as heterogeneous (R-model), homogenous (H-model) or did not change from 1 to 2 months (U-model). Results: The apparent elastic moduli increased at 2 months (from 355.58 ± 132.67 to 1139.30 ± 967.43 MPa) in R-models. But there was no significant difference in apparent elastic moduli between R-models (355.58 ± 132.67 and 1139.30 ± 967.43 MPa) and H-models (344.79 ± 138.73 and 1001.52 ± 692.12 MPa) in 1 and 2 months. A significant difference of apparent elastic moduli was found between the R-model (1139.30 ± 967.43 MPa) and U-model group (207.15 ± 64.60 MPa) in 2 months. Conclusions: This study showed that the callus structure stability remodeled overtime to achieve a more effective structure, while the material quality of callus tissue is a very important factor for callus strength. At the meantime, this study showed an evidence that the material heterogeneity maybe not as important as it is in bone fracture model.  相似文献   

7.
Representation of realistic muscle geometries is needed for systematic biomechanical simulation of musculoskeletal systems. Most of the previous musculoskeletal models are based on multibody dynamics simulation with muscles simplified as one-dimensional (1D) line-segments without accounting for the large muscle attachment areas, spatial fibre alignment within muscles and contact and wrapping between muscles and surrounding tissues. In previous musculoskeletal models with three-dimensional (3D) muscles, contractions of muscles were among the inputs rather than calculated, which hampers the predictive capability of these models. To address these issues, a finite element musculoskeletal model with the ability to predict contractions of 3D muscles was developed. Muscles with realistic 3D geometry, spatial muscle fibre alignment and muscle-muscle and muscle-bone interactions were accounted for. Active contractile stresses of the 3D muscles were determined through an efficient optimization approach based on the measured kinematics of the lower extremity and ground force during gait. This model also provided stresses and strains of muscles and contact mechanics of the muscle-muscle and muscle-bone interactions. The total contact force of the knee predicted by the model corresponded well to the in vivo measurement. Contact and wrapping between muscles and surrounding tissues were evident, demonstrating the need to consider 3D contact models of muscles. This modelling framework serves as the methodological basis for developing musculoskeletal modelling systems in finite element method incorporating 3D deformable contact models of muscles, joints, ligaments and bones.  相似文献   

8.
The purpose of this study was to determine whether modifying an existing, highly biofidelic full body finite element model [total human model for safety (THUMS)] would produce valid amplitude and temporal shock wave characteristics as it travels proximally through the lower extremity. Modifying an existing model may be more feasible than developing a new model, in terms of cost, labour and expertise. The THUMS shoe was modified to more closely simulate the material properties of a heel pad. Relative errors in force and acceleration data from experimental human pendulum impacts and simulated THUMS impacts were 22% and 54%, respectively, across the time history studied. The THUMS peak acceleration was attenuated by 57.5% and took 19.7 ms to travel proximally along the lower extremity. Although refinements may be necessary to improve force and acceleration timing, the modified THUMS represented, to a certain extent, shock wave propagation and attenuation demonstrated by living humans under controlled impact conditions.  相似文献   

9.
Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young’s modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson’s correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young’s modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.  相似文献   

10.
Peyronie's disease is a pathological condition of the penis which is characterized by localized ossification of the tunica albuginea. A common symptom of the chronic stage is penile deformity during erection, which is frequently associated with pain and erectile dysfunction. A two-dimensional biomechanical model of the penis was applied to study the development of Peyronie’s disease by simulating the mechanical stress distribution which would result from the interaction of the ossified tunical tissue with other penile soft tissues. The model was solved by using commercial finite element software for a characteristic erectile pressure. The results demonstrate that Peyronie’s plaques may induce intensified stresses around the penile nerves and blood vessels, up to double those in the normal penis. These elevated stresses may cause a painful sensation of neural origin or ischemia in regions of compressed vascular tissue. Severe penile deformities have been shown to develop if Peyronie’s plaques develop only around one of the corpora cavernosa due to the non-homogeneous resistance of the tunica to expansion during erection. The present model can be clinically applied as an aid in the planning process of reconstructive surgery or insertion of a prosthesis.  相似文献   

11.
An approach was developed to evaluate the load transfer mechanism in the temporomandibular joint (TMJ) area before, during and after mandibular ramus elongation by distraction osteogenesis (DO). In a concerted approach using computer tomography, magnetic resonance imaging (MRI), and finite element analysis, three-dimensional numerical models based on a young male patient, with a dento-facial deformity were generated. The magnitude and direction of the muscle forces acting on the mandible were assessed using both values derived from the muscles volume and cross-section as retrieved from the MRI-scan data-sets and taken from the literature. The resistance of the soft tissue envelope towards elongation during the DO-phase was also included. The finite element analyses showed that before skeletal correction by DO the load transfer was asymmetrical with high peak stresses in the affected joint. Following ramus elongation a more symmetrical loading in TMJs was predicted. The reaction forces in the TMJs during DO were low.  相似文献   

12.
Total ankle replacement remains a less satisfactory solution compared to other joint replacements. The goal of this study was to develop and validate a finite element model of total ankle replacement, for future testing of hypotheses related to clinical issues. To validate the finite element model, an experimental setup was specifically developed and applied on 8 cadaveric tibias. A non-cemented press fit tibial component of a mobile bearing prosthesis was inserted into the tibias. Two extreme anterior and posterior positions of the mobile bearing insert were considered, as well as a centered one. An axial force of 2 kN was applied for each insert position. Strains were measured on the bone surface using digital image correlation. Tibias were CT scanned before implantation, after implantation, and after mechanical tests and removal of the prosthesis. The finite element model replicated the experimental setup. The first CT was used to build the geometry and evaluate the mechanical properties of the tibias. The second CT was used to set the implant position. The third CT was used to assess the bone-implant interface conditions. The coefficient of determination (R-squared) between the measured and predicted strains was 0.91. Predicted bone strains were maximal around the implant keel, especially at the anterior and posterior ends. The finite element model presented here is validated for future tests using more physiological loading conditions.  相似文献   

13.
Background: The mechanical response of patient-specific bone to various load conditions is of major clinical importance in orthopedics. Herein we enhance the methods presented in Yosibash et al. [2007. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. ASME Journal of Biomechanical Engineering 129(3), 297–309.] for the reliable simulations of the human proximal femur by high-order finite elements (FEs) and validate the simulations by experimental observations.

Method of approach: A fresh-frozen human femur was scanned by quantitative computed tomography (QCT) and thereafter loaded (in vitro experiments) by a quasi-static force of up to 1250 N. QCT scans were manipulated to generate a high-order FE bone model with distinct cortical and trabecular regions having inhomogeneous isotropic elastic properties with Young's modulus represented by continuous spatial functions. Sensitivity analyses were performed to quantify parameters that mostly influence the mechanical response. FE results were compared to displacements and strains measured in the experiments.

Results: Young moduli correlated to QCT Hounsfield Units by relations in Keyak and Falkinstein [2003. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Medical Engineering and Physics 25, 781–787.] were found to provide predictions that match the experimental results closely. Excellent agreement was found for both the displacements and strains. The presented study demonstrates that reliable and validated high-order patient-specific FE simulations of human femurs based on QCT data are achievable for clinical computer-aided decision making.  相似文献   


14.
15.
16.
Calcific aortic valve disease (CAVD) is a serious disease affecting the aging population. A complex interaction between biochemicals, cells, and mechanical cues affects CAVD initiation and progression. In this study, motivated by the progression of calcification in regions of high strain, we developed a finite element method (FEM) based spatial calcification progression model. Several cardiac cycles of transient structural FEM simulations were simulated. After each simulation cycle, calcium deposition was placed in regions of high circumferential strain. Our results show the radial expansion of calcification as spokes starting from the attachment region, agreeing very well with the reported clinical data.  相似文献   

17.
Accommodation of the eyes, the mechanism that allows humans to focus their vision on near objects, naturally diminishes with age via presbyopia. People who have undergone cataract surgery, using current surgical methods and artificial lens implants, are also left without the ability to accommodate. The process of accommodation is generally well known; however the specific mechanical details have not been adequately explained due to difficulties and consequences of performing in vivo studies. Most studies have modeled the mechanics of accommodation under assumptions of a linearly elastic, isotropic, homogenous lens and lens capsule. Recent experimental and numerical studies showed that the lens capsule exhibits nonlinear elasticity and regional anisotropy. In this paper we present a numerical model of human accommodation using a membrane theory based finite element approach, incorporating recent findings on capsular properties. This study seeks to provide a novel perspective of the mechanics of accommodation. Such findings may prove significant in seeking biomedical solutions to restoring loss of visual power.  相似文献   

18.
Concurrent multiscale simulation strategies are required in computational biomechanics to study the interdependence between body scales. However, detailed finite element models rarely include muscle recruitment due to the computational burden of both the finite element method and the optimization strategies widely used to estimate muscle forces. The aim of this study was twofold: first, to develop a computationally efficient muscle force prediction strategy based on proportional-integral-derivative (PID) controllers to track gait and chair rise experimental joint motion with a finite element musculoskeletal model of the lower limb, including a deformable knee representation with 12 degrees of freedom; and, second, to demonstrate that the inclusion of joint-level deformability affects muscle force estimation by using two different knee models and comparing muscle forces between the two solutions. The PID control strategy tracked experimental hip, knee, and ankle flexion/extension with root mean square errors below 1°, and estimated muscle, contact and ligament forces in good agreement with previous results and electromyography signals. Differences up to 11% and 20% in the vasti and biceps femoris forces, respectively, were observed between the two knee models, which might be attributed to a combination of differing joint contact geometry, ligament behavior, joint kinematics, and muscle moment arms. The tracking strategy developed in this study addressed the inevitable tradeoff between computational cost and model detail in musculoskeletal simulations and can be used with finite element musculoskeletal models to efficiently estimate the interdependence between muscle forces and tissue deformation.  相似文献   

19.
The effect of long-latency reflex modulation on the performance of a quick adjustment movement following a muscle stretch was studied in 26 healthy male subjects. When the subjects felt a sudden angle displacement in the direction of a wrist extension they were required to make an adjustment movement by moving a handlebar, held in the hand, to align with a target position as quickly and as accurately as possible. The index of performance (adjustment time) was the time taken to move the handle to the target position from stretch onset. A DC torque motor was used to evoke electromyographic (EMG) reflex responses on a wrist flexor. Averaging of the rectified EMG, recorded from surface electrodes placed over the flexor, showed short- and long-latency reflexes (M1 and M2 components). For all subjects, the amplitudes of the reflex components decreased during the adjustment movement because the target position for this study was fixed to the extension side of the wrist joint. The decrease in the M2 component, which is considered to be a transcortical reflex, was significantly larger than the decrease in the M1 component, which is spinal reflex. The main finding was of a positive correlation between the length of adjustment time and the degree of reduction of M1 and M2 with the adjustment movement (r = 0.602 for M1, P < 0.01; r = 0.850 for M2, P < 0.001). Moreover, there were correlations between the consistency of the voluntary response onset and the degree of M2 decrease (r = 0.577, P < 0.01), and between the consistency of the voluntary response onset and the length of the adjustment time (r = 0.603, P < 0.01). Therefore, we have concluded that the subjects who were able to perform adjustment movements within a short time could modulate the long-latency reflex of the muscle involved in such movements in order to make the function of their voluntary muscle activity more effective, and thus were able to respond appropriately. Accepted: 19 February 1997  相似文献   

20.
This article introduces a new approach for the construction of a risk model for the prediction of Traumatic Brain Injury (TBI) as a result of a car crash. The probability of TBI is assessed through the fusion of an experiment-based logistic regression risk model and a finite element (FE) simulation-based risk model. The proposed approach uses a multilevel framework which includes FE simulations of vehicle crashes with dummy and FE simulations of the human brain. The loading conditions derived from the crash simulations are transferred to the brain model thus allowing the calculation of injury metrics such as the Cumulative Strain Damage Measure (CSDM). The framework is used to propagate uncertainties and obtain probabilities of TBI based on the CSDM injury metric. The risk model from FE simulations is constructed from a support vector machine classifier, adaptive sampling, and Monte-Carlo simulations. An approach to compute the total probability of TBI, which combines the FE-based risk assessment as well as the risk prediction from the experiment-based logistic regression model is proposed. In contrast to previous published work, the proposed methodology includes the uncertainty of explicit parameters such as impact conditions (e.g., velocity, impact angle), and material properties of the brain model. This risk model can provide, for instance, the probability of TBI for a given assumed crash impact velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号