共查询到20条相似文献,搜索用时 15 毫秒
1.
The ear drum, or tympanic membrane (TM), is a key component in the intricate relay that transmits air‐borne sound to our fluid‐filled inner ear. Despite early belief that the mammalian ear drum evolved as a transformation of a reptilian drum, newer fossil data suggests a parallel and independent evolution of this structure in mammals. The term “drum” belies what is in fact a complex three‐dimensional structure formed from multiple embryonic cell lineages. Intriguingly, disease affects the ear drum differently in its different parts, with the superior and posterior parts being much more frequently affected. This suggests a key role for the developmental details of TM formation in its final form and function, both in homeostasis and regeneration. Here we review recent studies in rodent models and humans that are beginning to address large knowledge gaps in TM cell dynamics from a developmental biologist's point of view. We outline the biological and clinical uncertainties that remain, with a view to guiding the indispensable contribution that developmental biology will be able to make to better understanding the TM. 相似文献
2.
Daniel De Greef Jan A.N. Buytaert Johan R.M. Aerts Luc Van Hoorebeke Manuel Dierick Joris Dirckx 《Journal of morphology》2015,276(9):1025-1046
A multitude of morphological aspects of the human middle ear (ME) were studied qualitatively and/or quantitatively through the postprocessing and interpretation of micro‐CT (micro X‐ray computed tomography) data of six human temporal bones. The samples were scanned after phosphotungstic acid staining to enhance soft‐tissue contrast. The influence of this staining on ME ossicle configuration was shown to be insignificant. Through postprocessing, the image data were converted into surface models, after which the approaches diverged depending on the topics of interest. The studied topics were: the ME ligaments; morphometric and mechanical parameters of the ossicles relating to inertia and the ossicular lever arm ratio; the morphology of the distal incus; the contact surface areas of the tympanic membrane (TM) and of the stapes footplate; and the thickness of the TM, round window of the cochlea, ossicle joint spaces, and stapedial annular ligament. Some of the resulting insights are relevant in ongoing discussions concerning ME morphology and mechanical functions, while other results provide quantitative data to add to existing data. All findings are discussed in the light of other published data and many are relevant for the construction of mechanical finite element simulations of the ME. J. Morphol. 276:1025–1046, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
3.
B. Areias M. P. L. Parente C. Santos F. Gentil R. M. Natal Jorge 《Computer methods in biomechanics and biomedical engineering》2017,20(9):958-966
Otitis media is a group of inflammatory diseases of the middle ear. Acute otitis media and otitis media with effusion (OME) are its two main types of manifestation. Otitis media is common in children and can result in structural alterations in the middle ear which will lead to hearing losses. This work studies the effects of an OME on the sound transmission from the external auditory meatus to the inner ear. The finite element method was applied on the present biomechanical study. The numerical model used in this work was built based on the geometrical information obtained from The visible ear project. The present work explains the mechanisms by which the presence of fluid in the middle ear affects hearing by calculating the magnitude, phase and reduction of the normalized umbo velocity and also the magnitude and phase of the normalized stapes velocity. A sound pressure level of 90 dB SPL was applied at the tympanic membrane. The harmonic analysis was performed with the auditory frequency varying from 100 Hz to 10 kHz. A decrease in the response of the normalized umbo and stapes velocity as the tympanic cavity was filled with fluid was obtained. The decrease was more accentuated at the umbo. 相似文献
4.
Rahul Mittal Hyunseo D. Jung Jeenu Mittal Adrien A. Eshraghi 《Journal of cellular physiology》2018,233(3):1823-1824
5.
Xuelin Wang Liling Wang Jianjun Zhou Yujin Hu 《Computer methods in biomechanics and biomedical engineering》2014,17(10):1096-1107
A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an orthotropic material property with dimensional variation along its length. In particular, an active feed-forward mechanism is added into the passive cochlear model to represent the activity of the outer hair cells (OHCs). An iterative procedure is proposed for calculating the nonlinear response resulting from the active cochlea in the frequency domain. Results on the middle-ear transfer function, BM steady-state frequency response and intracochlear pressure are derived. A good match of the model predictions with experimental data from the literatures demonstrates the validity of the ear model for simulating sound pressure gain of middle ear, frequency to place map, cochlear sensitivity and compressive output for large intensity input. The current model featuring an active cochlea is able to correlate directly the sound stimulus in the ear canal with the vibration of BM and provides a tool to explore the mechanisms by which sound pressure in the ear canal is converted to a stimulus for the OHCs. 相似文献
6.
Molly C. Womack Tyler S. Fiero Kim L. Hoke 《Evolution; international journal of organic evolution》2018,72(3):679-687
The repeated, independent evolution of traits (convergent evolution) is often attributed to shared environmental selection pressures. However, developmental dependencies among traits can limit the phenotypic variation available to selection and bias evolutionary outcomes. Here, we determine how changes in developmentally correlated traits may impact convergent loss of the tympanic middle ear, a highly labile trait within toads that currently lack adaptive explanation. The middle ear's lability could reflect evolutionary trade‐offs with other skull features under selection, or the middle ear may evolve independently of the rest of the skull, allowing it to be modified by active or passive processes without pleiotropic trade‐offs with other skull features. We compare the skulls of 55 species (39 eared, 16 earless) within the family Bufonidae, spanning six hypothesized independent middle ear transitions. We test whether shared or lineage‐specific changes in skull shape distinguish earless species from eared species and whether earless skulls lack other late‐forming skull bones. We find no evidence for pleiotropic trade‐offs between the middle ear and other skull structures. Instead, middle ear loss in anurans may provide a rare example of developmental independence contributing to evolutionary lability of a sensory system. 相似文献
7.
Fernanda Gentil Marco Parente Pedro Martins Carolina Garbe João Paço António J.M. Ferreira 《Computer methods in biomechanics and biomedical engineering》2013,16(4):392-402
The human ear is a complex biomechanical system and is divided into three parts: outer, middle and inner ear. The middle ear is formed by ossicles (malleus, incus and stapes), ligaments, muscles and tendons, which transfers sound vibrations from the eardrum to the inner ear, linking with mastoid and Eustachian tube. In this work, a finite element modelling of the tympano-ossicular system of the middle ear was developed. A dynamic study based on a structural response to harmonic vibrations, for a sound pressure level (SPL) of 110, 120 and 130 dB SPL applied in the eardrum, is presented. The connection between the ossicles is made using a contact formulation. The model includes the different ligaments considering its hyperelastic behaviour. The activation of the muscles is based on the constitutive model proposed by previous work. The harmonic responses of displacement and pressure obtained on the stapes footplate, for a frequency range between 100 Hz and 10 kHz, are obtained simulating the muscle activation. The results are compared considering the passive and active states. The results are discussed and they are in accordance with audiological data published with reference to the effects of the middle ear muscles contraction. 相似文献
8.
Lei Zhou Na Shen Miaolin Feng Houguang Liu Maoli Duan 《Computer methods in biomechanics and biomedical engineering》2013,16(13):1093-1102
AbstractOsteoporosis (OP) is common with advancing age. Several studies have shown a strong correlation between OP and otosclerosis. However, no studies have investigated OP of the malleus, incus or stapes in the human middle ear, its effect on middle ear transfer function. Here, we investigate whether these three ossicles develop OP, and how this affects middle ear transfer function. The effect of OP on middle ear transfer function was investigated in simulations based on a finite element (FE) method. First, the FE model used in our previous study was refined, and optimized by introducing viscoelastic properties to selected soft tissues of the middle ear. Then, the FE model was used to simulate OP of the three ossicles and assess its influence on middle ear transfer function. Other possible age-related changes, such as stiffness of the joints or ligaments in the middle ear, were also investigated. The results indicated that OP of the ossicles could increase the high frequency displacement of both the umbo and stapes footplate (FP). However, the stiffness of the middle ear soft tissue can lead to the decrease of middle ear gain at lower frequencies. Furthermore, loosening of these joints or ligaments could increase displacement of the umbo and stapes FP. In conclusion, although age-related hearing loss is most commonly conceived of as sensorineural hearing loss (SNHL), we found that age-related changes may also include OP and changes in joint stiffness, but these will have little effect on middle ear transfer function in elderly people. 相似文献
9.
10.
Adam J. Golman Kerry A. Danelson James P. Gaewsky 《Computer methods in biomechanics and biomedical engineering》2013,16(10):1044-1055
This study's purpose was to implement injury metrics into the Total Human Model for Safety (THUMS) mirroring the spinal accelerometers, rib accelerometers and chest band instrumentation from two lateral post-mortem human subject sled test configurations. In both sled configurations, THUMS contacted a flat rigid surface (either a wall or beam) at 6.7 m/s. Sled A maximum simulated wall forces for the thorax, abdomen and pelvis were 7.1, 5.0 and 10.0 kN versus 5.7 ± 0.8, 3.4 ± 1.2 and 6.2 ± 2.7 kN experimentally. Sled B maximum simulated beam forces for the torso and pelvis were 8.0 and 7.6 kN versus 8.5 ± 0.2 and 7.9 ± 2.5 kN experimentally. Quantitatively, force magnitude contributed more to variation between simulated and experimental forces than phase shift. Acceleration-based injury metrics were within one standard deviation of experimental means except for the lower spine in the rigid wall sled test. These validated metrics will be useful for quantifying occupant loading conditions and calculating injury risks in various loading configurations. 相似文献
11.
What did Morganucodon hear? 总被引:1,自引:0,他引:1
The structure of the middle and inner ear of Morganucodon , one of the oldest known mammals, is reviewed and compared to the structure of the ears of extant mammals, reptiles and birds with known auditory capabilities. Specifically, allometric relationships between ear dimensions (basilar-membrane length, tympanic-membrane area and stapes-footplate area) and specific features of the audiogram are defined in extant ears. These relationships are then used to make several predictions of auditory function in Morganucodon. The results point out that the ear structures of Morganucodon–Art similar in dimensions to ear structures in both extant small mammals–with predominantly high-frequency (10 kHz) auditory capabilities, and reptiles and birds- with better low and middle-frequency hearing (< 5 kHz). Although the allometric analysis cannot by itself determine whether Morganucodon heard more like present-day small mammals, or birds and reptiles, the apparent stiffness of the Morganucodon middle ear is both more consistent with the high-frequency mammalian middle ear and would act to decrease the sensitivity of a bird-reptile middle ear to low-frequency sound. Several likely hearing scenarios for Morganucodon are defined, including a scenario in which these animals had ears like those of modern small mammals that are selectively sensitive to high-frequency sounds, and a second scenario in which the Morganucodon ear was moderately sensitive to sounds of a narrow middle-frequency range (5–7 kHz) and relatively insensitive to sounds of higher or lower frequency. The evidence needed to substantiate either scenario includes some objective measure of the stiffness of the Morganucodon ossicular system, while a key datum needed to distinguish between the two hypotheses includes confirmation of the presence or absence of a cochlear lamina in the Morganucodon inner ear. 相似文献
12.
We studied the middle and inner ears of seven adult coruros (Spalacopus cyanus), subterranean and social rodents from central Chile, using free-hand dissection and routine staining techniques. Middle ear parameters that were focused on here (enlarged bullae and eardrums, ossicles of the "freely mobile type") are believed to enhance hearing sensitivity at lower frequencies. The organ of Corti was of a common mammalian type and revealed three peaks of higher inner hair cell densities. Based on a position frequency map, frequencies were assigned to the respective peaks along the basilar membrane. The first peak at around 300-400 Hz is discussed with respect to the burrow acoustics, while the peak around 10-20 kHz is probably a plesiomorphic feature. The most pronounced peak at around 2 kHz reflects the frequency at which the main energy of vocal communication occurs. The morphology of the ear of the coruro corresponds to the typical pattern seen in subterranean rodents (low frequency and low-sensitivity hearers), yet, at the same time, it also deviates from it in several functionally relevant features. 相似文献
13.
Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography
下载免费PDF全文

Anke Burkhardt Matthias Bornitz Thomas Zahnert Edmund Koch 《Journal of biophotonics》2014,7(6):434-441
Investigations of the tympanic membrane (TM) can have an important impact on understanding the sound conduction in the ear and can therefore support the diagnosis and treatment of diseases in the middle ear. High‐speed Doppler optical coherence tomography (OCT) has the potential to describe the oscillatory behaviour of the TM surface in a phase‐sensitive manner and additionally allows acquiring a three‐dimensional image of the underlying structure. With repeated sound stimuli from 0.4 kHz to 6.4 kHz, the whole TM can be set in vibration and the spatially resolved frequency response functions (FRFs) of the tympanic membrane can be recorded. Typical points, such as the umbo or the manubrium of malleus, can be studied separately as well as the TM surface with all stationary and wave‐like vibrations. Thus, the OCT methodology can be a promising technique to distinguish between normal and pathological TMs and support the differentiation between ossicular and membrane diseases. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
14.
Ahmet H. Ertas Keith Winwood Peter Zioupos John R. Cotton 《Computer methods in biomechanics and biomedical engineering》2013,16(10):1121-1128
Characterising the mechanisms causing viscoelastic mechanical properties of human cortical bone, as well as understanding sources of variation, is important in predicting response of the bone to creep and fatigue loads. Any better understanding, when incorporated into simulations including finite element analysis, would assist bioengineers, clinicians and biomedical scientists. In this study, we used an empirically verified model of creep strain accumulation, in a simulation of 10 non-homogeneous samples, which were created from micro-CT scans of human cortical bone of the femur midshaft obtained from a 74-year-old female cadaver. These non-homogeneous samples incorporate the presence of Haversian canals and resorption cavities. The influence of inhomogeneity on the response and variation in the samples in both creep and stress relaxation tests are examined. The relationship between steady-state creep rate, applied loads (stress relaxation and creep tests) and microstructure, that is bone apparent porosity, is obtained. These relations may provide insight into damage accumulation of whole human bones and be relevant to studies on osteoporosis. 相似文献
15.
Byeonggyu Jeon Jaeyul Lee Deokmin Jeon Pilun Kim Jeong Hun Jang Ruchire Eranga Wijesinghe Mansik Jeon Jeehyun Kim 《Journal of biophotonics》2020,13(2)
An elevated relative moisture in the external ear canal and middle ear cavity may predispose to chronic otorrhea and related infections along with abnormal tympanic membrane (TM) vibration patterns. Therefore, phase shift‐resolved optical Doppler vibrography (ODV) was used for vibration assessments of moisture influenced cadaveric TM. ODV was applied to generate time resolved cross‐sectional and volumetric vibrographs of a cadaveric TM, driven acoustically at several frequencies. In order to analyze the effect of moisture on TM, homogenous moisture conditions were provided by soaking the cadaveric TM specimens in 1× phosphate buffer saline with a pH of 7.4. The TM specimen was exposed to a rapidly switchable frequency generator during the ODV image acquisition. The experiment was conducted for 3 hours and the cadaveric TM was exposed to each frequency with an interval of 30 minutes. Acquired phase shift‐resolved ODV assessments revealed a depth dependent vibration tendency between the applied frequencies, along with a decline in the moisture level of the cadaveric TM specimen. Thus, the ODV method can aid our understanding of sound conduction in the middle ear, thus supporting the diagnosis of TM diseases. 相似文献
16.
The middle ear cavities of crocodilians have complex connections with the pharyngeal lumen, including lateral and median components which both open into a single chamber located on the dorsal midline of the pharynx. This chamber and the surrounding soft-tissue is herein termed the median pharyngeal valve. In the American alligator (Alligator mississippiensis) this valve opens, for a duration of 0.3 s, approximately every 120 s; the patency of the median pharyngeal valve was not influenced by either auditory stimuli or by submersing the alligator underwater. The median pharyngeal valve has an outer capsule of dense connective tissue and fibrocartilage and an inner “plug” of loose connective tissue. These opposing surfaces are lined by respiratory epithelium and separated by a cavity that is continuous with the middle ear cavities and the pharyngeal lumen (through a central opening in the capsule termed the pore). The inner plug of the median pharyngeal valve is contacted by skeletal muscles positioned to serve as both elevators/retractors (which would open the valve) and elevators/protractors (which, in conjunction with gravity, would close the valve). Unlike other vertebrate valve systems, the median pharyngeal valve appears to function as a deformable ball check valve. 相似文献
17.
T. Ovesen M. Gaihede P. Scousboe T. Ledet 《In vitro cellular & developmental biology. Animal》1994,30(4):249-255
Summary The present study was undertaken to quantitate the effects of atmospheric air and normal middle ear gas on cultured fibroblasts obtained from normal rabbit middle ear mucosa. The cells were exposed to three different gas compositions: 7% O2:5% CO2:88% N2, 21% O2:5% CO2:74% N2, and 75% O2:5% CO2:20% N2. The growth was monitored by measuring the total content of cell protein, the amount of DNA, and the cell division activity. The activity of the synthetic apparatus was determined by the collagen synthesis. For comparison, rabbit skin fibroblasts were grown under identical conditions. The results demonstrated significantly higher replication rate of middle ear fibroblasts at 7% oxygen than at atmospheric air whereas the collagen synthesis was significantly lower at 7%. Furthermore, the responses varied significantly between rabbit middle ear and rabbit skin fibroblasts. Thus the present study substantiates the hypothesis of an influence of atmospheric air on the middle ear mucosa which might be of importance, e.g., in relation to insertion of ventilation tubes or longstanding perforations of the tympanic membrane in otitis media. 相似文献
18.
Cetacean middle ears are unique among mammals in that they have an elongated tympanic membrane, a greatly reduced manubrium mallei, and an incudal crus longum that is shorter than the crus breve. Elongation of the tympanic membrane and reduction of the manubrium is thought to be related to an evolutionary rotation of the incus and malleus out of the plane of the tympanic membrane. We examined if rotation also occurs during ontogeny by comparing the middle ears of two species of dolphins (Delphinus delphis, Stenella attenuata) at different stages of development. We observed that: the incus has the body and crural proportions as in terrestrial mammals early in development; the incudomallear complex rotates approximately 90 degrees following ossification; the tympanic membrane is not elongated until relatively late in development. Therefore, some of the unique characteristics of the cetacean middle ear develop as modifications of an initially terrestrial-like morphology. 相似文献
19.
B. Hernández-Gascón N. Espés G. Pascual J.M. Bellón B. Calvo 《Computer methods in biomechanics and biomedical engineering》2014,17(10):1071-1085
Surgical procedures for hernia surgery are usually performed using prosthetic meshes. In spite of all the improvements in these biomaterials, the perfect match between the prosthesis and the implant site has not been achieved. Thus, new designs of surgical meshes are still being developed. Previous to implantation in humans, the validity of the meshes has to be addressed, and to date experimental studies have been the gold standard in testing and validating new implants. Nevertheless, these procedures involve long periods of time and are expensive. Thus, a computational framework for the simulation of prosthesis and surgical procedures may overcome some disadvantages of the experimental methods. The computational framework includes two computational models for designing and validating the behaviour of new meshes, respectively. Firstly, the beam model, which reproduces the exact geometry of the mesh, is set to design the weave and determine the stiffness of the surgical prosthesis. However, this implies a high computational cost whereas the membrane model, defined within the framework of the large deformation hyperelasticity, is a relatively inexpensive computational tool, which also enables a prosthesis to be included in more complex geometries such as human or animal bodies. 相似文献
20.
Héctor E. Ramírez-Chaves Stephen W. Wroe Lynne Selwood Lyn A. Hinds Chris Leigh Daisuke Koyabu Nikolay Kardjilov Vera Weisbecker 《Proceedings. Biological sciences / The Royal Society》2016,283(1822)
The ectotympanic, malleus and incus of the developing mammalian middle ear (ME) are initially attached to the dentary via Meckel''s cartilage, betraying their origins from the primary jaw joint of land vertebrates. This recapitulation has prompted mostly unquantified suggestions that several suspected—but similarly unquantified—key evolutionary transformations leading to the mammalian ME are recapitulated in development, through negative allometry and posterior/medial displacement of ME bones relative to the jaw joint. Here we show, using µCT reconstructions, that neither allometric nor topological change is quantifiable in the pre-detachment ME development of six marsupials and two monotremes. Also, differential ME positioning in the two monotreme species is not recapitulated. This challenges the developmental prerequisites of widely cited evolutionary scenarios of definitive mammalian middle ear (DMME) evolution, highlighting the requirement for further fossil evidence to test these hypotheses. Possible association between rear molar eruption, full ME ossification and ME detachment in marsupials suggests functional divergence between dentary and ME as a trigger for developmental, and possibly also evolutionary, ME detachment. The stable positioning of the dentary and ME supports suggestions that a ‘partial mammalian middle ear’ as found in many mammaliaforms—probably with a cartilaginous Meckel''s cartilage—represents the only developmentally plausible evolutionary DMME precursor. 相似文献