首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Two-equation turbulence modeling of pulsatile flow in a stenosed tube   总被引:1,自引:0,他引:1  
The study of pulsatile flow in stenosed vessels is of particular importance because of its significance in relation to blood flow in human pathophysiology. To date, however, there have been few comprehensive publications detailing systematic numerical simulations of turbulent pulsatile flow through stenotic tubes evaluated against comparable experiments. In this paper, two-equation turbulence modeling has been explored for sinusoidally pulsatile flow in 75% and 90% area reduction stenosed vessels, which undergoes a transition from laminar to turbulent flow as well as relaminarization. Wilcox's standard k-omega model and a transitional variant of the same model are employed for the numerical simulations. Steady flow through the stenosed tubes was considered first to establish the grid resolution and the correct inlet conditions on the basis of comprehensive comparisons of the detailed velocity and turbulence fields to experimental data. Inlet conditions based on Womersley flow were imposed at the inlet for all pulsatile cases and the results were compared to experimental data from the literature. In general, the transitional version of the k-omega model is shown to give a better overall representation of both steady and pulsatile flow. The standard model consistently over predicts turbulence at and downstream of the stenosis, which leads to premature recovery of the flow. While the transitional model often under-predicts the magnitude of the turbulence, the trends are well-described and the velocity field is superior to that predicted using the standard model. On the basis of this study, there appears to be some promise for simulating physiological pulsatile flows using a relatively simple two-equation turbulence model.  相似文献   

2.
Most experimental and numerical studies of pulsatile flow through stenosed arteries have been performed for a first harmonic oscillatory flow. In this paper, numerical solutions are presented for a physiological pulsatile flow as well as for an equivalent simple pulsatile flow, having the same stroke volume as the physiological flow, and the differences in their flow behavior are discussed. The analysis is restricted to laminar flow, Newtonian fluid and axisymmetric rigid stenosis. Comparison of results shows that the behaviors of the two flows are similar at some instances of time, however, important observed differences indicate that for thorough understanding of pulsatile flow behavior in stenosed arteries, the actual physiological flow should be simulated.  相似文献   

3.
4.
Biomechanics and Modeling in Mechanobiology - A numerical investigation of MHD blood flow through a stenosed permeable curved artery has been done in this study. Blood flow is considered in...  相似文献   

5.
6.
P Chaturani  R P Samy 《Biorheology》1985,22(6):521-531
Blood flow through a stenosed artery has been investigated in this paper. Blood has been represented by a non-Newtonian fluid obeying Herschel-Bulkley equation. This model has been used to study the influence of the fluid behaviour index n, shear-dependent nonlinear viscosity K and the yield stress tau H in blood flow through stenosed arteries. The variation of the wall shear stress and the flow resistance with n, K and tau H has been shown graphically. It is observed that the wall shear stress and the flow resistance increase in Herschel-Bulkley fluid in comparison with corresponding Newtonian fluid. It is of interest to note that, in the present model, the thickness of the plug core varies with the axial distance z in the stenotic region. Finally, some biological implications of the present model for some arterial diseases have been briefly discussed.  相似文献   

7.
8.
CFD analysis plays an important role in the area of analysis of blood flow as in-vivo measurements of blood flow is costly and easily not accessible. This paper presents simulation of blood flow in healthy and stenosed coronary artery 2- D models. The simulation was done considering non-Newtonian behavior of blood and pulsatile nature of blood flow which is close to physical scenario. Pressure distribution, velocity distribution and wall shear were examined to understand their effect on Atherosclerosis.  相似文献   

9.
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73 Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.  相似文献   

10.
A pulsatile laminar flow of a viscous, incompressible fluid through a stenosed artery was simulated by an immersed-boundary method. The method allows the use of a simple (rectangular) computational domain in order to simulate a flow around a complex geometry obstacle with surface irregularities (roughness). The influence of the shape and the surface roughness on the flow resistance was explored. The obtained numerical results were validated by comparison with published experimental and numerical results. We show that the surface irregularities have no significant influence on the flow resistance across an obstacle for a physiological range of Reynolds numbers. Notwithstanding, an accurate representation of irregularities allows investigation of the near-wall effects of a realistic flow such as fluid recirculation. We show that a detailed study of flow patterns in the immediate vicinity of the irregular surface can be performed using the immersed boundary method.  相似文献   

11.
Ghalichi F  Deng X 《Biorheology》2003,40(6):637-654
The pulsatile blood flow in a partially blocked artery is significantly altered as the flow regime changes through the cardiac cycle. This paper reports on the application of a low-Reynolds turbulence model for computation of physiological pulsatile flow in a healthy and stenosed carotid artery bifurcation. The human carotid artery was chosen since it has received much attention because atherosclerotic lesions are frequently observed. The Wilcox low-Re k-omega turbulence model was used for the simulation since it has proven to be more accurate in describing transition from laminar to turbulent flow. Using the FIDAP finite element code a validation showed very good agreement between experimental and numerical results for a steady laminar to turbulent flow transition as reported in a previous publication by the same authors. Since no experimental or numerical results were available in the literature for a pulsatile and turbulent flow regime, a comparison between laminar and low-Re turbulent calculations was made to further validate the turbulence model. The results of this study showed a very good agreement for velocity profiles and wall shear stress values for this imposed pulsatile laminar flow regime. To explore further the medical aspect, the calculations showed that even in a healthy or non-stenosed artery, small instabilities could be found at least for a portion of the pulse cycle and in different sections. The 40% and 55% diameter reduction stenoses did not significantly change the turbulence characteristics. Further results showed that the presence of 75% stenoses changed the flow properties from laminar to turbulent flow for a good portion of the cardiac pulse. A full 3D simulation with this low-Re-turbulence model, coupled with Doppler ultrasound, can play a significant role in assessing the degree of stenosis for cardiac patients with mild conditions.  相似文献   

12.
A mathematical model is constructed to examine the characteristics of three layered blood flow through the oscillatory cylindrical tube (stenosed arteries).The proposed model basically consists three layers of blood (viscous fluids with different viscosities) named as core layer (red blood cells),intermediate layer (platelets/white blood cells) and peripheral layer (plasma).The analysis was restricted to propagation of small-amplitude harmonic waves,generated due to blood flow whose wave length is larger compared to the radius of the arterial segment.The impacts of viscosity of fluid in peripheral layer and intermediate layer on the interfaces,average flow rate,mechanical efficiency,trapping and reflux are discussed with the help of numerical and computational results.This model is the generalized form of the preceding models.On the basis of present discussion,it is found that the size of intermediate and peripheral layers reduces in expanded region and enhances in contracted region with the increasing viscosity of fluid in peripheral layer,whereas,opposite effect is observed for viscosity of fluid in intermediate layer.Final conclusion is that the average flow rate and mechanical efficiency increase with the increasing viscosity of fluid in both layers,however,the effects of the viscosity of fluid in both layers on trapping and reflux are opposite to each other.  相似文献   

13.
This work analyzes the flow patterns at the anastomosis of a stenosed coronary bypass. Three-dimensional numerical simulations are performed using a finite elements method. We consider a geometrical model of the host coronary artery with and without a 75% severity stenosis for three different locations from the anastomosis. The flow features - velocity profiles, secondary motions and wall shear stresses - are compared for different configurations of the flow rate and of the distance of the anastomosis from the site of occlusion (called distance of grafting). The combination of the junction flow effects - counter rotating vortices - with the stenosis effects - confined jet flow - is particularly important when the distance of grafting is short. Given that the residual flow issued from the pathologic stenosis being non-negligible after two weeks grafting, models without stenosis cannot predict the evolution of the wall shear stress in the vicinity of the anastomosis.  相似文献   

14.
A two-fluid model for blood flow through a stenosed tube has been developed. The model consists of a core (suspension of RBCs) and peripheral plasma layer. The core is assumed to be represented by a polar fluid and the plasma layer by a Newtonian fluid. The flow is assumed to be steady and laminar, and the fluids incompressible. The flow variables are computed for normal blood and for the cases of polycythemia, plasma cell dyscrasias and for Hb SS diseases. Resistance to flow has been computed for different stenosis length and for different stenosis height. Shear stress distribution along the axial distance has been computed for different stenosis height. The impact of size effects (particle size to tube diameter) on blood diseases is discussed.  相似文献   

15.
A computational model of an oscillatory laminar flow of an incompressible Newtonian fluid has been carried out in the proximal part of human tracheobronchial trees, either normal or with a strongly stenosed right main bronchus. After acquisition with a multislice spiral CT, the thoracic images are processed to reconstruct the geometry of the trachea and the first six bronchus generations and to virtually travel inside this duct network. The facetisation associated with the 3D reconstruction of the tracheobronchial tree is improved to get a computation-adapted surface triangulation, which leads to a volumic mesh composed of tetrahedra. The Navier-Stokes equations associated with the classical boundary conditions and different values of the flow dimensionless parameters are solved using the finite element method. The airways are supposed to be rigid during rest breathing. The flow distribution among the set of bronchi is determined during the respiratory cycle. Cycle reproducibility and mesh size effects on the numerical results are examined. Helpful qualitative data are provided rather than accurate quantitative results in the context of multimodelling, from image processing to numerical simulations.  相似文献   

16.
Pulsatile flow was studied in physiologically realistic models of a normal and a moderately stenosed (30% diameter reduction) human carotid bifurcation. Time-resolved velocity measurements were made using magnetic resonance imaging, from which wall shear stress (WSS) vectors were calculated. Velocity measurements in the inflow and outflow regions were also used as boundary conditions for a computational fluid dynamics (CFD) model. Experimental flow patterns and derived WSS vectors were compared qualitatively with the corresponding CFD predictions. In the stenosed phantom, flow in the bulb region of the "internal carotid artery" was concentrated along the outer wall, with a region of low and recirculating flow near the inner wall. In the normal phantom, the converse was found, with a low flow region near the outer wall of the bulb. Time-averaged WSS and oscillatory shear index were also markedly different for the two phantoms.  相似文献   

17.
D Lee  J J Chiu 《Biorheology》1992,29(2-3):337-351
A model of intima thickening proposed by Friedman and his coworkers (1,2) is incorporated in our computer code to simulate the growth of intima under shear. The computer code is based on a finite volume method in a boundary-fitted coordinate system. It is found that the model yields an evenly-distributed thickening over a straight, smooth vessel wall. However, in a stenosed or a curved artery, thicker intima can be formed in preferential regions due to unevenly-distributed wall shear stresses. The results clearly demonstrate the correlations among the geometry, wall shear rate and the plaque localization in arteries. The model is applied to a straight artery with a stenosis or sinus, a smooth curved artery and a stenosed curved artery. The effects of stenosis/sinus and lumen curvature on the flows and the intimal thickening are studied. The simulation provides a numerical visualization of the intimal thickening in a dynamic way.  相似文献   

18.
The present study deals with an appropriate mathematical model of an artery in the presence of constriction in which the generated wall shear stress due to blood flow is analysed. The geometry of the stenosed arterial segment in the diseased state, causing malfunction of the cardiovascular system, is formed mathematically. The flowing blood contained in the stenosed artery is treated as non-Newtonian and the flow is considered to be two-dimensional. The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the present pursuit. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier–Stokes equations for non-Newtonian fluids. The flow-field can be obtained primarily following the radial coordinate transformation, using the appropriate boundary conditions and finally adopting a suitable finite difference scheme numerically. The influences of flow unsteadiness, the arterial wall distensibility and the presence of stenosis on the flow-field and the wall shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and thereby to validate the applicability of the present theoretical model.  相似文献   

19.
Chen J  Lu XY  Wang W 《Journal of biomechanics》2006,39(11):1983-1995
Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.  相似文献   

20.
The distributions of mass transfer rate and wall shear stress in sinusoidal laminar pulsating flow through a two-dimensional asymmetric stenosed channel have been studied experimentally and numerically. The distributions are measured by the electrochemical method. The measurement is conducted at a Reynolds number of about 150, a Schmidt number of about 1000, a nondimensional pulsating frequency of 3.40, and a nondimensional flow amplitude of 0.3. It is suggested that the deterioration of an arterial wall distal to stenosis may be greatly enhanced by fluid dynamic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号