首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.  相似文献   

2.
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1–L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.  相似文献   

3.
Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results indicated that ignoring intervertebral translational DOFs had in general low to moderate impact on model predictions. Compared with the OFE model, the SFE and HFE models predicted generally larger L4–L5 and L5–S1 compression and shear loads, especially for tasks with greater trunk angles; differences reached ~15% for the L4–L5 compression, ~36% for the L4–L5 shear and ~18% for the L5–S1 shear loads. Such differences increased, as location of the hinge joints in the HFE model moved from the mid-disc height to either the lower or upper endplates. Stability analyses of these models for some select activities revealed small changes in predicted margin of stability. Model studies dealing exclusively with the estimation of spinal loads and/or stability may, hence with small loss of accuracy, neglect intervertebral translational DOFs at smaller trunk flexion angles for the sake of computational simplicity.  相似文献   

4.
Evaluation of the loads on lumbar intervertebral discs (IVD) is critically important since it is closely related to spine biomechanics, pathology and prosthesis design. Non-invasive estimation of the loads in the discs remains a challenge. In this study, we proposed a new technique to estimate in vivo loads in the IVD using a subject-specific finite element (FE) model of the disc and the kinematics of the disc endplates as input boundary conditions. The technique was validated by comparing the forces and moments in the discs calculated from the FE analyses to the in vitro experiment measurements of three corresponding lumbar discs. The results showed that the forces and moments could be estimated within an average error of 20%. Therefore, this technique can be a promising tool for non-invasive estimation of the loads in the discs and may be extended to be used on living subjects.  相似文献   

5.
The use of musculoskeletal simulation software has become a useful tool for modelling joint and muscle forces during human activity, including in reduced gravity because direct experimentation is difficult. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler? (San Clemente, CA, USA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces but no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. The rectus femoris was predicted to peak at 60.1% activation in the same test case compared to 19.2% activation using default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.  相似文献   

6.
Muscle force estimation (MFE) has become more and more important in exploring principles of pathological movement, studying functions of artificial muscles, making surgery plan for artificial joint replacement, improving the biomechanical effects of treatments and so on. At present, existing software are complex for professionals, so we have developed a new software named as concise MFE (CMFE). CMFE which provides us a platform to analyse muscle force in various actions includes two MFE methods (static optimisation method and electromyographic-based method). Common features between these two methods have been found and used to improve CMFE. A case studying the major muscles of lower limb of a healthy subject walking at normal speed has been presented. The results are well explained from the effect of the motion produced by muscles during movement. The development of this software can improve the accuracy of the motion simulations and can provide a more extensive and deeper insight in to muscle study.  相似文献   

7.
Abstract

Low back pain (LBP) is the most common type of pain in America, and spinal instability is a primary cause. The facet capsular ligament (FCL) encloses the articulating joints of the spine and is of particular interest due to its high innervation – as instability ensues, high stretch values likely are a cause of this pain. Therefore, this work investigated the FCL's role in providing stability to the lumbar spine. A previously validated finite element model of the L4-L5 spinal motion segment was used to simulate pure moment bending in multiple planes. FCL failure was simulated and the following outcome measures were calculated: helical axes of motion, range of motion (ROM), bending stiffness, facet joint space, and FCL stretch. ROM increased, bending stiffness decreased, and altered helical axis patterns were observed with the removal of the FCL. Additionally, a large increase in FCL stretch was measured with diminished FCL mechanical competency, providing support that the FCL plays an important role in spinal stability.  相似文献   

8.
Biomechanical modelling and simulation techniques offer some hope for unravelling the complex inter-relationships of structure and function perhaps even for extinct organisms, but have their limitations owing to this complexity and the many unknown parameters for fossil taxa. Validation and sensitivity analysis are two indispensable approaches for quantifying the accuracy and reliability of such models or simulations. But there are other subtleties in biomechanical modelling that include investigator judgements about the level of simplicity versus complexity in model design or how uncertainty and subjectivity are dealt with. Furthermore, investigator attitudes toward models encompass a broad spectrum between extreme credulity and nihilism, influencing how modelling is conducted and perceived. Fundamentally, more data and more testing of methodology are required for the field to mature and build confidence in its inferences.  相似文献   

9.
Kinetic analysis of walking requires joint kinematics and ground reaction force (GRF) measurement, which are typically obtained from a force plate. GRF is difficult to measure in certain cases such as slope walking, stair climbing, and track running. Nevertheless, estimating GRF continues to be of great interest for simulating human walking. The purpose of the study was to develop reaction force models placed on the sole of the foot to estimate full GRF when only joint kinematics are provided (Type-I), and to estimate ground contact shear forces when both joint kinematics and foot pressure are provided (Type-II and Type-II-val). The GRF estimation models were attached to a commercial full body skeletal model using the AnyBody Modeling System, which has an inverse dynamics-based optimization solver. The anterior–posterior shear force and medial–lateral shear force could be estimated with approximate accuracies of 6% BW and 2% BW in all three methods, respectively. Vertical force could be estimated in the Type-I model with an accuracy of 13.75% BW. The accuracy of the force estimation was the highest during the mid-single-stance period with an average RMS for errors of 3.10% BW, 1.48% BW, and 7.48% BW for anterior–posterior force, medial–lateral force, and vertical force, respectively. The proposed GRF estimation models could predict full and partial GRF with high accuracy. The design of the contact elements of the proposed model should make it applicable to various activities where installation of a force measurement system is difficult, including track running and treadmill walking.  相似文献   

10.
Abstract

The kinematics of a spinal motion segment is determined by the material properties of the soft-tissue and the morphology. The material properties can vary within subjects and between vertebral levels, leading to a wide possible range of motion of a spinal segment independently on its morphology. The goal of this numerical study was to identify the most influential material parameters concerning the kinematics of a spinal motion segment and their plausible ranges. Then, a method was tested to deduce the material properties automatically, based on a given ROM and morphology. A fully parametric finite element model of the morphology and material properties of a lumbar spinal motion segment was developed. The impact of uncertainty of twelve spinal material parameters, as well as the size of the gap between the articular surfaces of the facet joints was examined. The simulation results were compared to our own in vitro data. The flexibility of a lumbar segment was especially influenced by the properties of the anterior annulus region, the facet gap size and the interspinous ligament. The high degree of uncertainty in the material properties and facet gap size published in the literature can lead to a wide scatter in the motion of a spinal segment, with a range of 6°-17° in the intact condition in flexion/extension, from 5°-22° in lateral bending and from 3°-14° in axial rotation. Statistical analysis of the variability might help to estimate the sensitivity and total uncertainty propagated through biomechanical simulations, affecting the reliability of the predictions.  相似文献   

11.
The inverse dynamics technique applied to musculoskeletal models, and supported by optimisation techniques, is used extensively to estimate muscle and joint reaction forces. However, the solutions of the redundant muscle force sharing problem are sensitive to the detail and modelling assumptions of the models used. This study presents four alternative biomechanical models of the upper limb with different levels of discretisation of muscles by bundles and muscle paths, and their consequences on the estimation of the muscle and joint reaction forces. The muscle force sharing problem is solved for the motions of abduction and anterior flexion, acquired using video imaging, through the minimisation of an objective function describing muscle metabolic energy consumption. While looking for the optimal solution, not only the equations of motion are satisfied but also the stability of the glenohumeral and scapulothoracic joints is preserved. The results show that a lower level of muscle discretisation provides worse estimations regarding the muscle forces. Moreover, the poor discretisation of muscles relevant to the joint in analysis limits the applicability of the biomechanical model. In this study, the biomechanical model of the upper limb describing the infraspinatus by a single bundle could not solve the complete motion of anterior flexion. Despite the small differences in the magnitude of the forces predicted by the biomechanical models with more complex muscular systems, in general, there are no significant variations in the muscular activity of equivalent muscles.  相似文献   

12.
An effective way to avoid invading or injuring the subjects is to use the musculoskeletal model when studying the dynamic properties of muscles in vivo. So, we put forward a joint coordinate system-based method, which mainly focuses on the coordinate's transformation of corresponding muscle attachment points, respectively, in the model and the subject in order to reproduce the movement of the subject on the model. As muscle moment arm is usually used to evaluate the dynamic properties of muscles, the moment arms in elbow flexion for each of the major muscles crossing the elbow in 50 healthy subjects (25 males and 25 females), ranging in height from 1.50 to 1.80 m (mean 1.6542 m) are calculated and compared with the measured data obtained from anatomical studies reported in the literature. The trends of the value basically coincide with each other. So, this novel method can be valid.  相似文献   

13.
Comparative modelling is a powerful method that easily predicts a considerably accurate structure of a protein by using a template structure having a similar amino-acid sequence to the target protein. However, in the region where the amino-acid sequence is different between the target and the template, the predicted structure remains unreliable. In such a case, the model has to be refined. In the present study, we explored the possibility of a molecular dynamics-based method, using the human SAP Src Homology 2 (SH2) domain as the modelling target. The multicanonical method was used to alleviate the multiple-minima problem and the generalised Born/surface area model was used to reduce the computational cost. In addition, position restraints were imposed on the atoms in the reliable regions to avoid unnecessary conformational sampling. We analyzed the conformational distribution of the ligand-recognition loop of the domain and found that the most populated conformational clusters in the ensemble of the model agreed well with one of the two major clusters in the ensemble of the reference simulation starting from the crystal structure. This demonstrates that the current refinement method can significantly improve the accuracy of an unreliable region in a comparative model.  相似文献   

14.
This paper first presents basic Petri net components representing molecular interactions and mechanisms of signalling pathways, and introduces a method to construct a Petri net model of a signalling pathway with these components. Then a simulation method of determining the delay time of transitions, by using timed Petri nets — i.e. the time taken in firing of each transition — is proposed based on some simple principles that the number of tokens flowed into a place is equivalent to the number of tokens flowed out. Finally, the availability of proposed method is confirmed by observing signalling transductions in biological pathways through simulation experiments of the apoptosis signalling pathways as an example.  相似文献   

15.
Recently, a suite of cell migration assays were conducted to investigate the migration of neural crest (NC) cells along the gut during the development of the enteric nervous system (ENS). The NC cells colonise the gastro-intestinal tract as a rostro-caudal wave. Local behaviour was shown to be controlled by position relative to the leading edge of the wavefront. The assays involved chick-quail grafting techniques allowing the total invading population to be considered as a two-species system. A two-species continuum model with logistic proliferation and a migration mechanism is developed here to simulate the chick-quail graft experiments and provide a means of looking at the processes occurring within the invasion wave. Five migration mechanisms are considered--linear diffusion, two cases of nonlinear diffusion, chemokinesis and chemotaxis. The model results agree with the experimental observations, regardless of the specific type of migration mechanism. The results show that NC cell invasion is driven by proliferation and cell motility at the leading edge of the wave. Furthermore, logistic proliferation exerts the dominant control on the system. This observation is confirmed by analysing some simplified invasion models. Once the basic experiments were mathematically replicated, the mathematical models were used in turn to make some predictions that were yet to be experimentally tested. This involved conducting a sensitivity analysis of the system by interrupting the proliferation and/or migration ability of the leading edge. Numerical results show that the system is stable against these changes. Of the three experiments suggested, one was carried out and the experimental results were concordant with the theoretical predictions. The outcome of two other suggested experiments are predicted and left for future experimental validation.  相似文献   

16.
The two main goals of this study are: (i) to examine the range shifts of a currently northwards expanding species, the map butterfly (Araschnia levana), in relation to annual variation in weather, and (ii) to test the capability of a bioclimatic envelope model, based on broad-scale European distribution data, to predict recent distributional changes (2000–2004) of the species in Finland. A significant relationship between annual maximum dispersal distance of the species and late summer temperature was detected. This suggests that the map butterfly has dispersed more actively in warmer rather than cooler summers, the most notable dispersal events being promoted by periods of exceptionally warm weather and southerly winds. The accuracy of the broad-scale bioclimatic model built for the species with European data using Generalized Additive Models (GAM) was good based on split-sample evaluation for a single period. However, the model’s performance was poor when applied to predict range shifts in Finland. Among the many potential explanations for the poor success of the transferred bioclimatic model, is the fact that bioclimatic envelope models do not generally account for species dispersal. This and other uncertainties support the view that bioclimatic models should be applied with caution when they are used to project future range shifts of species.  相似文献   

17.
1 Pest management in organic systems is challenged by the paucity of options for direct interventions to control damaging populations compared with conventional agriculture. Consequently, a greater emphasis has to be placed on managing pest numbers through a rotation. In the present study, simulation modelling is used to evaluate the effects of different management options on populations of Tipula paludosa (leatherjackets) in organic rotations.
2 The growth of leatherjacket populations in grass was simulated over 5 years for different starting numbers. A significant risk of leatherjacket attack to subsequent crops can be avoided by limiting the fertility building phase of a rotation to a maximum of 2 years.
3 The effect of cultural control through additional cultivation interventions was compared in rotations comprising a grass/clover fertility building phase with host and/or nonhost crops. It is concluded that the effects are marginal and that prophylactic use cannot be recommended.
4 The prophylactic use of biological control agents in permanent grass and grass/arable rotations was investigated. Maximum population reductions in grass were achieved through annual autumn applications but the optimal economic strategy was less frequent than this. Application in the autumn preceding a spring-sown arable crop provided the best risk reduction.
5 A model decision support system for the control of pests in organic systems using data for leatherjacket damage to spring barley is presented. Economic threshold concepts are used to define when cultural control (as additional cultivation) and biocontrol applications should be used.
6 The present study shows the potential benefits of simulation modelling for the rapid evaluation of a wide range of pest management options. Any conclusions drawn from such simulations, however, are provisional until they can be tested experimentally.  相似文献   

18.
Considered are the principles of realization of biophysical models of heart ventricle electrical activity in the form of a double electric layer on the surface of the electrically active myocardium (epicardium and endocardium) and the boundary surfaces dividing the model compartments with different electrophysiological characteristics. The model parameters are the electrophysiological and anatomical characteristics of the heart such as the geometry of the ventricles and the specialized His-Purkinje conduction system, the velocity of depolarization spread over myocardium, the ratio of the velocities of excitation transmission through the Myocardium / His / Purkinje elements of the model, the shape of transmembrane action potentials on the boundary surfaces, the orientation of the intrinsic anatomical axes of the heart relative to the initial set of coordinates, and some other biophysical characteristics of the myocardium. This model is the main unit of a computer simulation system, which includes databases of real and simulated electrocardiosignals.  相似文献   

19.
General response patterns of fish populations tostress, originally proposed by Colby for fisheriesrehabilitation and later adapted by Munkittrick forcontaminants, were evaluated using an individual-basedsimulation model. General response patterns relatechanges in population-level variables to the type ofstress. The model follows the daily growth,mortality, and spawning of individual yellow perch andwalleye through their lifetime, and was corroboratedusing Oneida Lake data. Two versions of the model wereused: population (yellow perch only) and community(dynamic predation on yellow perch by walleye). Eightstresses were imposed on the population and communityversions of the model and 100-year simulations wereperformed. Response patterns were defined by changesin predicted yellow perch mean population abundance,mean age of adults, and mean adult growth (representedby mean length at age-7). Proposed response patternswere similar to those predicted using the populationversion of the model. Simulations using the communityversion of the model distorted the response patterns,either causing amplification, dampening, or reversalof many of the patterns. Predicted response patternsbecame unique when additional variables were included.Our model results suggest that caution is appropriatein interpreting general response patterns based onmean age, or when the population of interest plays amajor role in a relatively simple food web. The responsepattern approach may be better at identifying the lifestage impacted rather than the mechanism of the stress.  相似文献   

20.
Degeneration of intervertebral disk (IVD) has been increased in recent years. The lumbar herniation can be cured using conservative and surgical procedures. Surgery is considered after failure of conservative treatment. Partial discectomy, fusion, and total disk replacement (TDR) are also common surgical treatments for degenerative disk disease. However, due to limitations and disadvantages of the current treatments, many studies have been carried out to approach the best design of mimicking natural disk. Recently, a new method of TDRs has been introduced using nature deformation of IVD by reinforced fibers of annulus fibrosis. Nonetheless, owing to limitations of experimental works on the human body, numerical studies of IVD may help to understand load transfer and biomechanical properties within the disks with reinforced fibers. In this study, a three-dimensional (3D) finite element model of the L2-L3 disk vertebrae unit with 12 vertical fibers embedded into annulus fibrosis was constructed. The IVD was subjected to compressive force, bending moment, and axial torsion. The most important parameters of disk failures were compared to that of experimental data. The results showed that the addition of reinforced fibers into the disk invokes a significant decrease of stress in the nucleus and annulus. The findings of this study may have implications not only for developing IVDs with reinforced fibers but also for the application of fiber reinforced IVD in orthopedics surgeries as a suitable implant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号