首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The current paper aims at assessing the sensitivity of muscle and intervertebral disc force computations against potential errors in modeling muscle attachment sites. We perturbed each attachment location in a complete and coherent musculoskeletal model of the human spine and quantified the changes in muscle and disc forces during standing upright, flexion, lateral bending, and axial rotation of the trunk. Although the majority of the muscles caused minor changes (less than 5%) in the disc forces, certain muscle groups, for example, quadratus lumborum, altered the shear and compressive forces as high as 353% and 17%, respectively. Furthermore, percent changes were higher in the shear forces than in the compressive forces. Our analyses identified certain muscles in the rib cage (intercostales interni and intercostales externi) and lumbar spine (quadratus lumborum and longissimus thoracis) as being more influential for computing muscle and disc forces. Furthermore, the disc forces at the L4/L5 joint were the most sensitive against muscle attachment sites, followed by T6/T7 and T12/L1 joints. Presented findings suggest that modeling muscle attachment sites based on solely anatomical illustrations might lead to erroneous evaluation of internal forces and promote using anatomical datasets where these locations were accurately measured. When developing a personalized model of the spine, certain care should also be paid especially for the muscles indicated in this work.  相似文献   

2.
Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.  相似文献   

3.
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1–L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.  相似文献   

4.
Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results indicated that ignoring intervertebral translational DOFs had in general low to moderate impact on model predictions. Compared with the OFE model, the SFE and HFE models predicted generally larger L4–L5 and L5–S1 compression and shear loads, especially for tasks with greater trunk angles; differences reached ~15% for the L4–L5 compression, ~36% for the L4–L5 shear and ~18% for the L5–S1 shear loads. Such differences increased, as location of the hinge joints in the HFE model moved from the mid-disc height to either the lower or upper endplates. Stability analyses of these models for some select activities revealed small changes in predicted margin of stability. Model studies dealing exclusively with the estimation of spinal loads and/or stability may, hence with small loss of accuracy, neglect intervertebral translational DOFs at smaller trunk flexion angles for the sake of computational simplicity.  相似文献   

5.
The use of musculoskeletal simulation software has become a useful tool for modelling joint and muscle forces during human activity, including in reduced gravity because direct experimentation is difficult. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler? (San Clemente, CA, USA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces but no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. The rectus femoris was predicted to peak at 60.1% activation in the same test case compared to 19.2% activation using default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.  相似文献   

6.
Evaluation of the loads on lumbar intervertebral discs (IVD) is critically important since it is closely related to spine biomechanics, pathology and prosthesis design. Non-invasive estimation of the loads in the discs remains a challenge. In this study, we proposed a new technique to estimate in vivo loads in the IVD using a subject-specific finite element (FE) model of the disc and the kinematics of the disc endplates as input boundary conditions. The technique was validated by comparing the forces and moments in the discs calculated from the FE analyses to the in vitro experiment measurements of three corresponding lumbar discs. The results showed that the forces and moments could be estimated within an average error of 20%. Therefore, this technique can be a promising tool for non-invasive estimation of the loads in the discs and may be extended to be used on living subjects.  相似文献   

7.
There is currently no validated full-body lifting model publicly available on the OpenSim modelling platform to estimate spinal loads during lifting. In this study, the existing full-body-lumbar-spine model was adapted and validated for lifting motions to produce the lifting full-body model. Back muscle activations predicted by the model closely matched the measured erector spinae activation patterns. Model estimates of intradiscal pressures and in vivo measurements were strongly correlated. The same spine loading trends were observed for model estimates and reported vertebral body implant measurements. These results demonstrate the suitability of this model to evaluate changes in lumbar loading during lifting.  相似文献   

8.
BackgroundOpenSim models are typically based on cadaver findings that are generalized to represent a wide range of populations, which curbs their validity. Patient-specific modelling through incorporating magnetic resonance imaging (MRI) improves the model’s biofidelity with respect to joint alignment and articulations, muscle wrapping, and ligament insertions. The purpose of this study was to determine if the inclusion of an MRI-based knee model would elicit differences in lower limb kinematics and resulting knee ligament lengths during a side cut task.MethodsEleven participants were analyzed with the popular Rajagopal OpenSim model, two variations of the same model to include three and six degrees of freedom knee (DOF), and a fourth version featuring a four DOF MRI-based knee model. These four models were used in an inverse kinematics analysis of a side cut task and the resulting lower limb kinematics and knee ligament lengths were analyzed.ResultsThe MRI-based model was more responsive to the movement task than the original Rajagopal model while less susceptible to soft tissue artifact than the unconstrained six DOF model. Ligament isometry was greatest in the original Rajagopal model and smallest in the six DOF model.ConclusionsWhen using musculoskeletal modelling software, one must acutely consider the model choice as the resulting kinematics and ligament lengths are dependent on this decision. The MRI-based knee model is responsive to the kinematics and ligament lengths of highly dynamic tasks and may prove to be the most valid option for continuing with late-stage modelling operations such as static optimization.  相似文献   

9.
Muscle force estimation (MFE) has become more and more important in exploring principles of pathological movement, studying functions of artificial muscles, making surgery plan for artificial joint replacement, improving the biomechanical effects of treatments and so on. At present, existing software are complex for professionals, so we have developed a new software named as concise MFE (CMFE). CMFE which provides us a platform to analyse muscle force in various actions includes two MFE methods (static optimisation method and electromyographic-based method). Common features between these two methods have been found and used to improve CMFE. A case studying the major muscles of lower limb of a healthy subject walking at normal speed has been presented. The results are well explained from the effect of the motion produced by muscles during movement. The development of this software can improve the accuracy of the motion simulations and can provide a more extensive and deeper insight in to muscle study.  相似文献   

10.
Abstract

Low back pain (LBP) is the most common type of pain in America, and spinal instability is a primary cause. The facet capsular ligament (FCL) encloses the articulating joints of the spine and is of particular interest due to its high innervation – as instability ensues, high stretch values likely are a cause of this pain. Therefore, this work investigated the FCL's role in providing stability to the lumbar spine. A previously validated finite element model of the L4-L5 spinal motion segment was used to simulate pure moment bending in multiple planes. FCL failure was simulated and the following outcome measures were calculated: helical axes of motion, range of motion (ROM), bending stiffness, facet joint space, and FCL stretch. ROM increased, bending stiffness decreased, and altered helical axis patterns were observed with the removal of the FCL. Additionally, a large increase in FCL stretch was measured with diminished FCL mechanical competency, providing support that the FCL plays an important role in spinal stability.  相似文献   

11.
Biomechanical modelling and simulation techniques offer some hope for unravelling the complex inter-relationships of structure and function perhaps even for extinct organisms, but have their limitations owing to this complexity and the many unknown parameters for fossil taxa. Validation and sensitivity analysis are two indispensable approaches for quantifying the accuracy and reliability of such models or simulations. But there are other subtleties in biomechanical modelling that include investigator judgements about the level of simplicity versus complexity in model design or how uncertainty and subjectivity are dealt with. Furthermore, investigator attitudes toward models encompass a broad spectrum between extreme credulity and nihilism, influencing how modelling is conducted and perceived. Fundamentally, more data and more testing of methodology are required for the field to mature and build confidence in its inferences.  相似文献   

12.
Kinetic analysis of walking requires joint kinematics and ground reaction force (GRF) measurement, which are typically obtained from a force plate. GRF is difficult to measure in certain cases such as slope walking, stair climbing, and track running. Nevertheless, estimating GRF continues to be of great interest for simulating human walking. The purpose of the study was to develop reaction force models placed on the sole of the foot to estimate full GRF when only joint kinematics are provided (Type-I), and to estimate ground contact shear forces when both joint kinematics and foot pressure are provided (Type-II and Type-II-val). The GRF estimation models were attached to a commercial full body skeletal model using the AnyBody Modeling System, which has an inverse dynamics-based optimization solver. The anterior–posterior shear force and medial–lateral shear force could be estimated with approximate accuracies of 6% BW and 2% BW in all three methods, respectively. Vertical force could be estimated in the Type-I model with an accuracy of 13.75% BW. The accuracy of the force estimation was the highest during the mid-single-stance period with an average RMS for errors of 3.10% BW, 1.48% BW, and 7.48% BW for anterior–posterior force, medial–lateral force, and vertical force, respectively. The proposed GRF estimation models could predict full and partial GRF with high accuracy. The design of the contact elements of the proposed model should make it applicable to various activities where installation of a force measurement system is difficult, including track running and treadmill walking.  相似文献   

13.
Abstract

The kinematics of a spinal motion segment is determined by the material properties of the soft-tissue and the morphology. The material properties can vary within subjects and between vertebral levels, leading to a wide possible range of motion of a spinal segment independently on its morphology. The goal of this numerical study was to identify the most influential material parameters concerning the kinematics of a spinal motion segment and their plausible ranges. Then, a method was tested to deduce the material properties automatically, based on a given ROM and morphology. A fully parametric finite element model of the morphology and material properties of a lumbar spinal motion segment was developed. The impact of uncertainty of twelve spinal material parameters, as well as the size of the gap between the articular surfaces of the facet joints was examined. The simulation results were compared to our own in vitro data. The flexibility of a lumbar segment was especially influenced by the properties of the anterior annulus region, the facet gap size and the interspinous ligament. The high degree of uncertainty in the material properties and facet gap size published in the literature can lead to a wide scatter in the motion of a spinal segment, with a range of 6°-17° in the intact condition in flexion/extension, from 5°-22° in lateral bending and from 3°-14° in axial rotation. Statistical analysis of the variability might help to estimate the sensitivity and total uncertainty propagated through biomechanical simulations, affecting the reliability of the predictions.  相似文献   

14.
The inverse dynamics technique applied to musculoskeletal models, and supported by optimisation techniques, is used extensively to estimate muscle and joint reaction forces. However, the solutions of the redundant muscle force sharing problem are sensitive to the detail and modelling assumptions of the models used. This study presents four alternative biomechanical models of the upper limb with different levels of discretisation of muscles by bundles and muscle paths, and their consequences on the estimation of the muscle and joint reaction forces. The muscle force sharing problem is solved for the motions of abduction and anterior flexion, acquired using video imaging, through the minimisation of an objective function describing muscle metabolic energy consumption. While looking for the optimal solution, not only the equations of motion are satisfied but also the stability of the glenohumeral and scapulothoracic joints is preserved. The results show that a lower level of muscle discretisation provides worse estimations regarding the muscle forces. Moreover, the poor discretisation of muscles relevant to the joint in analysis limits the applicability of the biomechanical model. In this study, the biomechanical model of the upper limb describing the infraspinatus by a single bundle could not solve the complete motion of anterior flexion. Despite the small differences in the magnitude of the forces predicted by the biomechanical models with more complex muscular systems, in general, there are no significant variations in the muscular activity of equivalent muscles.  相似文献   

15.
An effective way to avoid invading or injuring the subjects is to use the musculoskeletal model when studying the dynamic properties of muscles in vivo. So, we put forward a joint coordinate system-based method, which mainly focuses on the coordinate's transformation of corresponding muscle attachment points, respectively, in the model and the subject in order to reproduce the movement of the subject on the model. As muscle moment arm is usually used to evaluate the dynamic properties of muscles, the moment arms in elbow flexion for each of the major muscles crossing the elbow in 50 healthy subjects (25 males and 25 females), ranging in height from 1.50 to 1.80 m (mean 1.6542 m) are calculated and compared with the measured data obtained from anatomical studies reported in the literature. The trends of the value basically coincide with each other. So, this novel method can be valid.  相似文献   

16.
In a stochastic simulation study the effect of simultaneously changing the model for prediction of breeding values and changing the breeding goal was studied. A population of 100 000 cows with registrations on seven traits was simulated in two steps. In the first step of 15 years the population was selected for production and mastitis occurrence using a univariate model for prediction of breeding values for production and a trivariate model using information on mastitis treatments, udder depth and somatic cell score for prediction of breeding values for mastitis occurrence. In the second step six different scenarios were set up and simulated for 15 years combining two different breeding goals and three different models for prediction of breeding values in 20 replicates. Breeding goal 1 had relative economic value per genetic standard deviation on production (19.4) and mastitis occurrence ( − 50) whereas breeding goal 2 had a economic value on production (19.4), udder depth (4.2), mastitis occurrence ( − 50), non return rate (13.0) and days open ( − 16.75). Model 1 was a model similar to the one used in the first 15 years. Model 2 was an approximate multitrait model where solutions for fixed effects from a model corresponding to model 1 were subtracted from the phenotypes and a multitrait model with an overall mean, a year effect, an additive genetic and a residual effect were applied. Model 3 was a full multitrait model. Average genetic trends for total merit and each individual trait over 20 replicates were compared for each scenario. With the number of replicates the genetic responses using model 2 and 3 were not significant different. With a broad breeding goal using, model 2 or model 3 gave a significantly higher response in total merit than using model 1. Using a narrow breeding goal there was no significant difference between models used for prediction of breeding values. Results showed that with a breeding goal with a lot of emphasis on low heritable traits with a high economic value using a multitrait methodology for prediction of breeding values will redistribute the genetic progress in the total merit index. More gain will come from the low heritable traits in the breeding goal and less from traits with higher heritability. With a broad breeding goal and exploiting the available information in the data the inbreeding coefficient increased though not significantly.  相似文献   

17.
Translational vertebral motion during functional tasks manifests itself in dynamic loci for center of rotation (COR). A shift of COR affects moment arms of muscles and ligaments; consequently, muscle and joint forces are altered. Based on posture- and level-specific trends of COR migration revealed by in vivo dynamic radiography during functional activities, it was postulated that the instantaneous COR location for a particular joint is optimized in order to minimize the joint reaction forces. A musculoskeletal multi-body model was employed to investigate the hypotheses that (1) a posterior COR in upright standing and (2) an anterior COR in forward flexed posture leads to optimized lumbar joint loads. Moreover, it was hypothesized that (3) lower lumbar levels benefit from a more superiorly located COR.The COR in the model was varied from its initial position in posterior-anterior and inferior-superior direction up to ±6 mm in steps of 2 mm. Movement from upright standing to 45° forward bending and backwards was simulated for all configurations. Joint reaction forces were computed at levels L2L3 to L5S1. Results clearly confirmed hypotheses (1) and (2) and provided evidence for the validity of hypothesis (3), hence offering a biomechanical rationale behind the migration paths of CORs observed during functional flexion/extension movement. Average sensitivity of joint force magnitudes to an anterior shift of COR was +6 N/mm in upright and −21 N/mm in 30° forward flexed posture, while sensitivity to a superior shift in upright standing was +7 N/mm and −8 N/mm in 30° flexion. The relation between COR loci and joint loading in upright and flexed postures could be mainly attributed to altered muscle moment arms and consequences on muscle exertion. These findings are considered relevant for the interpretation of COR migration data, the development of numerical models, and could have an implication on clinical diagnosis and treatment or the development of spinal implants.  相似文献   

18.
19.
Finite element (FE) models driven by medical image data can be used to estimate subject-specific spinal biomechanics. This study aimed to combine magnetic resonance (MR) imaging and quantitative fluoroscopy (QF) in subject-specific FE models of upright standing, flexion and extension. Supine MR images of the lumbar spine were acquired from healthy participants using a 0.5 T MR scanner. Nine 3D quasi-static linear FE models of L3 to L5 were created with an elastic nucleus and orthotropic annulus. QF data was acquired from the same participants who performed trunk flexion to 60° and trunk extension to 20°. The displacements and rotations of the vertebrae were calculated and applied to the FE model. Stresses were averaged across the nucleus region and transformed to the disc co-ordinate system (S1 = mediolateral, S2 = anteroposterior, S3 = axial). In upright standing S3 was predicted to be −0.7 ± 0.6 MPa (L3L4) and −0.6 ± 0.5 MPa (L4L5). S3 increased to −2.0 ± 1.3 MPa (L3L4) and −1.2 ± 0.6 MPa (L4L5) in full flexion and to −1.1 ± 0.8 MPa (L3L4) and −0.7 ± 0.5 MPa (L4L5) in full extension. S1 and S2 followed similar patterns; shear was small apart from S23. Disc stresses correlated to disc orientation and wedging. The results demonstrate that MR and QF data can be combined in a participant-specific FE model to investigate spinal biomechanics in vivo and that predicted stresses are within ranges reported in the literature.  相似文献   

20.
Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, we demonstrate that so-called Langevin-Hastings updates are useful for efficient simulation of the posterior distributions, and we discuss computational issues concerning prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号