首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

The recovery of activity of lipases immobilized onto a photo-crosslinked polymer network was 76.0% and 41.0% for entrapment and adsorption methods, respectively. Both entrapped and adsorbed immobilized enzymes were very stable, retaining more than 60% of their activity over the range of temperatures studied. Immobilization by either method protected their relative activities nearly 96% at 70°C. The optimum pH was 8.0 for immobilized enzymes and 6.0 for the free enzyme at 40°C, while the relative activities after storage at 0–4°C for 30 days were 98% and 75% using entrapment and adsorption methods, respectively. These results indicated that lipase immobilized by entrapment and adsorption not only had good activity recovery, but also remarkable stability, better reusability and application adaptability than free lipase. Also, it can be safely stated that, photo-crosslinked polymer network can be used as alternative supports for immobilization of lipase for enzymatic polymerization reactions. In the ring-opening polymerization of ?-caprolactone, polymerization rates were clearly affected as monomer conversions were 58% and 49% and the highest molecular weights (Mn) obtained were 7890 and 5600 gmol? 1 for entrapment and adsorption methods, respectively.  相似文献   

2.
Abstract

Extracellular lipase from an indigenous Bacillus aryabhattai SE3-PB was immobilized in alginate beads by entrapment method. After optimization of immobilization conditions, maximum immobilization efficiencies of 77%?±?1.53% and 75.99%?±?3.49% were recorded at optimum concentrations of 2% (w/v) sodium alginate and 0.2?M calcium chloride, respectively, for the entrapped enzyme. Biochemical properties of both free and immobilized lipase revealed no change in the optimum temperature and pH of both enzyme preparations, with maximum activity attained at 60?°C and 9.5, respectively. In comparison to free lipase, the immobilized enzyme exhibited improved stability over the studied pH range (8.5–9.5) and temperature (55–65?°C) when incubated for 3?h. Furthermore, the immobilized lipase showed enhanced enzyme-substrate affinity and higher catalytic efficiency when compared to soluble enzyme. The entrapped enzyme was also found to be more stable, retaining 61.51% and 49.44% of its original activity after being stored for 30 days at 4?°C and 25?°C, respectively. In addition, the insolubilized enzyme exhibited good reusability with 18.46% relative activity after being repeatedly used for six times. These findings suggest the efficient and sustainable use of the developed immobilized lipase for various biotechnological applications.  相似文献   

3.
Lipase from Candida rugosa was immobilized on a β-cyclodextrin-based polymer by adsorption and subsequent cross-linking with epichlorohydrin (EP-CD). The ligand iminodiacetic acid (IDA) was then bonded with the cross-linked β-cyclodextrin (EP-CD-IDA). This affinity adsorbent was further chelated with Cu2 + for the purpose of binding affinity and stability. The properties of the immobilized lipase were assayed and compared with those of the free enzyme. Results showed that 266 µg protein with an activity of 17.85 U was bound per gram of matrix, giving 188% of the specific activity of the free enzyme and a total recovered activity of 79.7% under the optimum conditions. The pH and thermal stabilities of lipase were improved after immobilization on the β-cyclodextrin-based polymer (EP-CD-IDA-Cu2 +). In addition, experimental results indicated that the residual activity of the immobilized lipase was 50% after eight cycles of reuse.  相似文献   

4.
The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., gold modified with a methyl-terminated, self-assembled alkylthiol layer. Lipase adsorption was monitored gravimetrically using a quartz crystal microbalance (QCM). Lipase activity was determined colorimetrically by following p-nitrophenol propionate hydrolysis. Adsorbed lipase topography was examined by atomic force microscopy (AFM). Lipase adsorption from low ionic strength aqueous buffer produced a uniform confluent protein monolayer. Inclusion of 10% (vol) ethanol in the buffer during immobilization resulted in a 33% adsorbed mass increase. Chemically similar cosolvents, all at 10% by volume in buffer, were also individually examined for their influence on CALB adsorption. Glycerol or 1-propanol increased mass adsorption by 10%, while 2-propanol increased mass adsorption by 33%. QCM dissipation values increased threefold with the inclusion of either ethanol or 2-propanol in the medium during lipase adsorption, indicating formation of multilayers of CALB. Partial multilayer formation using 10% ethanol was confirmed by AFM. Inclusion of 10% ethanol in the CALB immobilization buffer decreased the specific activity of the immobilized lipase by 37%. The formation of lipase multilayers in the presence of certain cosolvents thus results in lower specific activity, which might be due to either influences on lipase conformation or substrate active site accessibility.  相似文献   

5.
《Process Biochemistry》2014,49(8):1332-1336
Keratinase from Purpureocillium lilacinum LPSC # 876 was immobilized on chitosan beads using two different cross-linking agents: glutaraldehyde and genipin. For its immobilization certain parameters were optimized such as cross-linker concentration, activation time and activation temperature. Under optimum conditions, enzyme immobilization resulted to be 96 and 92.8% for glutaraldehyde and genipin, respectively, with an activity recovery reaching up to 81% when genipin was used. The immobilized keratinase showed better thermal and pH stabilities compared to the soluble form, retaining more than 85% of its activity at pH 11 and 74% at 50 °C after 1 h of incubation. The residual activity of immobilized keratinase remained more than 60% of its initial value after five hydrolytic cycles. The results in this study support that glutaraldehyde could be replaced by genipin as an alternative cross-linking eco-friendly agent for enzyme immobilization.  相似文献   

6.
Genipin, a reagent of plant origin was used for the immobilization of lipase by cross-linking to chitosan beads. The catalytic properties and operational and storage stabilities of the immobilized lipase were compared with the soluble lipase. Under optimum conditions, 198 microg protein was bound per g chitosan with a protein-coupling yield of 35%. The hydrolytic activity was 10.8 U/g chitosan and the relative specific activity was 108%. The immobilized lipase showed better thermal and pH stabilities compared to the soluble form. The immobilized enzyme exhibited mass transfer limitations as reflected by a higher apparent K(m) value and a lower energy of activation. The immobilized enzyme retained about 74% of its initial activity after five hydrolytic cycles.  相似文献   

7.
Enzyme immobilization using a low-cost support that allows increasing operational stability and reutilization arise as a great economic advantage for the industry. In this work, it was explored different methods of Thermomyces lanuginosus lipase (NS-40116) immobilization in flexible polyurethane foam (PU). PU polymer was synthesized using polyether and toluene diisocyanate as monomers. PU-NS-40116 immobilized was evaluated in terms of stability in a range of pH (7.0 and 9.0), temperature (24, 50 and 60?°C) for 24?h, and storage stability (room temperature and 4?°C) for 30?days. The results showed that after 30?days of storage immobilized enzyme kept 80% of initial enzyme activity. PU support before and after immobilization process was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Free and immobilized enzymes were compared in terms of hydrolysis of soybean oil. Immobilized enzyme by entrapment was evaluated in successive cycles of reuse showing catalytic activity above 50% even after 5 successive cycles of reuse, confirming the efficiency of immobilization process.  相似文献   

8.
Lipase from Arthrobacter sp. was immobilized onto low-cost diatomite materials using different protocols for the resolution of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one (HMPC) by asymmetric acylation. The support surface was grafted various functional groups including methacryloxypropyl, vinyl, octyl, dodecyl and γ-(aminopropyl)-glutaraldehyde. These modifications resulted in various mechanisms during the immobilization and thus introduced different characteristics to the prepared lipases. The interfacially adsorbed lipase onto dodecyl-modified support exhibited both higher activity and stability among these immobilized preparations. The modified enzyme-aggregate coating method was performed based on interfacial adsorption in our work, and the characteristics of this immobilized lipase were investigated and compared with those by cross-linking and interfacial adsorption methods. It was shown that the enzyme-aggregate coated lipase yielded the highest activity with a recovered activity of 8.5-fold of the free enzyme, and the highest operational stability with 85% of initial activity remained after 10 recycles. Excellent enantioselectivity (E ≥ 400, with e.e. = 99% of S-HMPC) was obtained for most lipase preparations in our paper (E = 85 for the free enzyme).  相似文献   

9.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

10.
脂肪酶的固定化及其性质研究   总被引:4,自引:0,他引:4  
曹国民  盛梅 《生物技术》1997,7(3):14-17
采用吸附与交联相结合的方法国定化脂肪酶,研究了脂肪酶固定化的工艺条件,并考察了固定化脂肪酶的催化性能和稳定性。试验结果表明,WA20树脂固定化脂肪酶的最适条件是:酶液pH7.0、给酶量300IU/g树脂、固定时间8h,所得固定化脂肪酶的活力约为165IU/g树脂;固定化酶稳定性较高,在冰箱内贮存6个月活力没有下降,操作半衰期约为750h,而未用戌二醛文联的固定化脂肪酶操作半衰期仅约290h;固定化脂肪酶催化橄榄油水解的最适条件是:PH8.0、温度55℃、底物浓度60%(V/V)、搅拌转速500r/m。  相似文献   

11.
Glutaraldehyde chemistry has been used to immobilize lipase B from Candida antarctica (CALB) under different situations. Using high ionic strength, ionic adsorption is avoided, but CALB is adsorbed on the support via interfacial activation. Using non-ionic detergents (e.g., Triton X-100), the enzyme becomes ionically adsorbed on the activated support. If detergent and salt are simultaneously present during immobilization, a covalent attachment to the support is first produced. In absence of detergent or high ionic strength, a mixture of all of the previous immobilization reasons should coexist. Thus, 5 different CALB biocatalysts were prepared following the previous described protocols, and its stability and activity, pH/activity profile and specificity versus R and S methyl mandelate were analyzed. The existence of covalent attachment of more than 95% of the enzyme molecules was confirmed by washing the biocatalysts in salt and detergent solutions. The glutaraldehyde treatment of the enzyme adsorbed on aminated supports did not produce a significant improvement on the activity of the enzyme versus p-nitrophenylpropinate (pNPB) nor a high stabilization of the enzyme. This differed from the effects of a similar treatment of CAL adsorbed on octyl agarose. However, they were similar to the effects of this treatment on covalently immobilized CALB, suggesting that the immobilization protocol may greatly affect the final effect of a chemical modification on the enzyme properties.Dramatic changes in the enzyme features were observed comparing the different preparations, mainly in the specificity of CALB versus p-NPB and R-methyl mandelate (from 2.5 to 20), or in the enantiospecificity versus R/S methyl mandelate (from 1.8 to 16), confirming that these different immobilization protocols produced biocatalysts with different features. Moreover, changes in experimental conditions produced very different effects on the properties of the different CALB preparations.  相似文献   

12.
Lipase A from Candida antarctica (CALA, commercialized as Novocor ADL) was immobilized on octyl-agarose, which is a very useful support for lipase immobilization, and coated with polyethylenimine to improve the stability. The performance was compared to that of the form B of the enzyme (CALB) immobilized on the same support, as both enzymes are among the most popular ones used in biocatalysis. CALA immobilization produced a significant increase in enzyme activity vs. p-nitrophenyl butyrate (pNPB) (by a factor of seven), and the coating with PEI did not have a significant effect on enzyme activity. CALB reduced its activity slightly after enzyme immobilization. Octyl-CALA was less stable than octyl-CALB at pH 9 and more stable at pH 5 and, more clearly, at pH 7. PEI coating only increased octyl-CALA stability at pH 9. In organic solvents, CALB had much better stability in methanol and was similarly stable in acetonitrile or dioxane. In these systems, the PEI coating of octyl-CALA permitted some stabilization. While octyl-CALA was more active vs. pNPB, octyl-CALB was much more active vs. mandelic esters or triacetin. Thus, depending on the specific reaction and the conditions, CALA or CALB may offer different advantages and drawbacks. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2735, 2019  相似文献   

13.
Glucoamylase (GA) was immobilized onto polyaniline (PANI)-grafted magnetic poly(2-hydroxyethylmethacrylate-co-glycidylmethacrylate) hydrogel (m-p(HEMA-GMA)-PANI) with two different methods (i.e., adsorption and adsorption/cross-linking). The immobilized enzyme preparations were used for the hydrolysis of “starch” dextrin. The amount of enzyme loading on the ferrogel was affected by the medium pH and the initial concentration of enzyme. The maximum loading capacity of the enzyme on the ferrogel was found to be 36.7 mg/g from 2.0 mg/mL enzyme solution at pH 4.0. The adsorbed GA demonstrated higher activity (59%) compared to adsorbed/cross-linked GA (43%). Finally, the immobilized GA preparations exhibited greater stability against heat at 55 °C and pH 4.5 compared to free enzyme (50 °C and pH 5.5), suggesting that the ferrogel was suitable support for immobilization of glucoamylase.  相似文献   

14.
Candida antarctica lipase was immobilized by an adsorption and cross-linking method with NW-ZT2 and by modification-coupled method with a silica–PEG gel. The final product silica–PEG-lipase was confirmed by IR spectra. The optimum pH value, the optimum temperature, the thermo-stabilities and operational stabilities for two kinds of immobilized lipase were also determined. Results show that the silica–PEG-lipase gel was superior to the lipase immobilized by adsorption and cross-linking, however both are viable for use in transesterification reactions.  相似文献   

15.
Novozyme 435, which is a commercial immobilized lipase B from Candida antarctica (CALB), has been proven to be inadequate for the kinetic resolution of rac‐indanyl acetate. As it has been previously described that different immobilization protocols may greatly alter lipase features, in this work, CALB was covalently immobilized on epoxy Immobead‐350 (IB‐350) and on glyoxyl‐agarose to ascertain if better kinetic resolution would result. Afterwards, all CALB biocatalysts were utilized in the hydrolytic resolution of rac‐indanyl acetate and rac‐(chloromethyl)‐2‐(o‐methoxyphenoxy) ethyl acetate. After optimization of the immobilization protocol on IB‐350, its loading capacity was 150 mg protein/g dried support. Furthermore, the CALB‐IB‐350 thermal and solvent stabilities were higher than that of the soluble enzyme (e.g., by a 14‐fold factor at pH 5–70°C and by a 11‐fold factor in dioxane 30%–65°C) and that of the glyoxyl‐agarose‐CALB (e.g., by a 12‐fold factor at pH 10–50°C and by a 21‐fold factor in dioxane 30%–65°C). The CALB‐IB‐350 preparation (with 98% immobilization yield and activity versus p‐nitrophenyl butyrate of 6.26 ± 0.2 U/g) was used in the hydrolysis of rac‐indanyl acetate using a biocatalyst/substrate ratio of 2:1 and a pH value of 7.0 at 30°C for 24 h. The conversion obtained was 48% and the enantiomeric excess of the product (e.e.p) was 97%. These values were much higher than the ones obtained with Novozyme 435, 13% and 26% of conversion and e.e.p, respectively. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:878–889, 2018  相似文献   

16.
A partially purified lipase produced by the thermophile Geobacillus thermoleovorans CCR11 was immobilized by adsorption on porous polypropylene (Accurel EP-100) in the presence and absence of 0.1% Triton X-100. Lipase production was induced in a 2.5% high oleic safflower oil medium and the enzyme was partially purified by diafiltration (co. 500,000 Da). Immobilization conditions were established at 25 °C, pH 6, and a protein concentration of 0.9 mg/mL in the presence and absence of 0.1% Triton X-100. Immobilization increased enzyme thermostability but there was no change in neither the optimum pH nor in pH resistance irrelevant to the presence of the detergent during immobilization. Immobilization with or without Triton X-100 allowed the reuse of the lipase preparation for 11 and 8 cycles, respectively. There was a significant difference between residual activity of immobilized and soluble enzyme after 36 days of storage at 4 °C (P < 0.05). With respect to chain length specificity, the immobilized lipase showed less activity over short chain esters than the soluble lipase. The immobilized lipase showed good resistance to desorption with phosphate buffer and NaCl; minor loses with detergents were observed (less than 50% with Triton X-100 and Tween-80), but activity was completely lost with SDS. Immobilization of G. thermoleovorans CCR11 lipase in porous polypropylene is a simple and easy method to obtain a biocatalyst with increased stability, improved performance, with the possibility for re-use, and therefore an interesting potential use in commercial conditions.  相似文献   

17.
Abstract

Polyamine microspheres (PA-M) prepared using polyethyleneimine as matrix were used for the immobilization of Candida antarctica lipase. The isoelectric point of PA-M is 10.6, and the hydrophobicity of PA-M was indicated using naphthalene. Optimization of conditions showed that the maximal loading of lipase on PA-M reached 230.2 mg g? 1 at pH 9.0 and 35°C. An increased buffer concentration had no effect on the activity of lipase but decreased the amount of lipase adsorbed. Simulation with Langmuir and Freundlich isotherms demonstrated that the adsorption of lipase on PA-M was thermodynamically favorable. Covalent crosslinking of the lipase adsorbed extended the pH range and increased the optimal temperature of the lipase activity. The physically adsorbed lipase (P-lipase) and the covalently immobilized derivative (C-lipase) retained more than 75% and 85% of their initial activity, respectively, after 10 cycles of usage. The half-lives of P-lipase and C-lipase at 50°C were 15.70 and 27.67 times higher than that of the free enzyme, respectively. Compared to P-lipase, covalent immobilization obviously reduced the catalytic efficiency and activation energy of the enzyme.  相似文献   

18.
The preservation of activity of extracellular enzymes in soil is presently associated with their immobilization on organic or inorganic carriers. Enzyme immobilization results, however, in a significant decrease in enzymatic activity. In the present work, the mechanism responsible for promotion of the catalytic activity was revealed, as well as the favorable effect of low-molecular alkylhydrozybenzenes of the class of alkylresorcinols, which are common in soil organic matter, on stability of immobilized enzymes (exemplified by amylases) by their post-translational modification. Optimal conditions (enzyme to sorbent ratio, pH optimum, CaCl2 concentration, and sorption time) for amylase sorption on a biological sorbent (yeast cell walls) were determined and decreased activity of the immobilized enzyme compared to its dissolved state was confirmed. Alkylresorcinols (C7AHB) at concentrations of 1.6 to 80 mM were found to cause an increase of amylase activity both in the case of already sorbed enzymes (by 30%) and in the case of a free dissolved enzyme with its subsequent immobilization (by 50–60%). In both cases, the optimal C7AHB concentration was 16 mM. Amylase stability was determined for C7AHB-modified and unmodified enzymes immobilized on the biological sorbent after two cycles of freezing (–20°C) and thawing (4°C). Inverse dependence was revealed between increasing stability of C7AHB-modified enzymes and an increase in their activity, as well as higher stability of immobilized modified amylases than of the dissolved modified enzyme. Investigation of the effect of C7HOB-modification in the preservation of activity in immobilized amylases after four freeze–thaw cycles revealed: (1) better preservation of activity by the modified immobilized enzymes compared to immobilized ones; (2) differences in the dynamics of activity loss within compared pairs, with activity of immobilized amylases decreasing after the second cycle to a lower level (42%) than activity of the modified immobilized enzymes after the fourth cycle (48%). These results demonstrate that in the preservation of activity of extracellular enzymes in soil both stabilization mechanisms are of importance: immobilization on organic carriers and modification of the enzyme conformation by low-molecular compounds with the functions of chemical chaperones.  相似文献   

19.
The combination of Deep-eutectic-solvents (DES) with water as “co-solvent” enables a low-viscous reaction medium that keeps its “non-conventional” nature and thus enables synthetic lyophilization reactions (e.g. esterification) catalyzed by hydrolases. Substrates with different polarity may be employed. This paper shows how the enzyme immobilization with cross-linking aggregates (CLEA) leads to highly stable and active immobilized catalysts in different DES. As a remarkable case, when choline chloride-glycerol DES is used, CLEA derivatives of Candida antarctica lipase B (CLEA-CALB) are stable for at least 14?days without any loss of activity. The immobilized biocatalysts are applied in non-viscous DES-water blends (8% v/v) to catalyze the esterification of benzoic acid and glycerol to furnish glyceryl monobenzoate (α-MBG) in productivities of ~35?g α-MBG L?1d?1. Compared to other commercial immobilized CALB, the CLEA-CALB derivatives rendered more product (higher conversions by 30%). Moreover, CLEA derivatives were successfully reused for six times without any loss of activity. Given the ease of immobilization (CLEA), their excellent performance in DES and the low viscosity of the DES-water blends, the reported approach may be useful for many synthetic procedures and even for continuous processes with largely optimized outcomes.  相似文献   

20.
Cellulase has been immobilized on hybrid concanavalin A (Con A)-layered calcium alginate–starch beads. Immobilized cellulase retained about 82% of its activity. Con A was extracted from jack bean and the obtained crude protein was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The immobilized beads showed high mechanical and storage stability; immobilized cellulase retained 100% and 85% activity at 4°C and 30°C, respectively, over one month. The immobilized cellulase retained about 70% of its activity after five cycles of use. The immobilized cellulase retained 70% activity after 120-min exposure to 60°C, whereas the soluble form only retained about 20%, showing that immobilization improved thermal stability. Surface morphology and elemental analysis of immobilized cellulase were examined using scanning electron microscope equipped with energy-dispersive X-ray. Based on the enzyme stability and reuse, this method of immobilization is both convenient and cheap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号