首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Constitutive models facilitate investigation into load bearing mechanisms of biological tissues and may aid attempts to engineer tissue replacements. In soft tissue models, a commonly made assumption is that collagen fibers can only bear tensile loads. Previous computational studies have demonstrated that radially aligned fibers stiffen a material in unconfined compression most by limiting lateral expansion while vertically aligned fibers buckle under the compressive loads. In this short communication, we show that in conjunction with swelling, these intuitive statements can be violated at small strains. Under such conditions, a tissue with fibers aligned parallel to the direction of load initially provides the greatest resistance to compression. The results are further put into the context of a Benninghoff architecture for articular cartilage. The predictions of this computational study demonstrate the effects of varying fiber orientations and an initial tare strain on the apparent material parameters obtained from unconfined compression tests of charged tissues.  相似文献   

2.
The mechanical behavior of most biological soft tissue is nonlinear viscoelastic rather than elastic. Many of the models previously proposed for soft tissue involve ad hoc systems of springs and dashpots or require measurement of time-dependent constitutive coefficient functions. The model proposed here is a system of evolution differential equations, which are determined by the long-term behavior of the material as represented by an energy function of the type used for elasticity. The necessary empirical data is time independent and therefore easier to obtain. These evolution equations, which represent non-equilibrium, transient responses such as creep, stress relaxation, or variable loading, are derived from a maximum energy dissipation principle, which supplements the second law of thermodynamics. The evolution model can represent both creep and stress relaxation, depending on the choice of control variables, because of the assumption that a unique long-term manifold exists for both processes. It succeeds, with one set of material constants, in reproducing the loading-unloading hysteresis for soft tissue. The models are thermodynamically consistent so that, given data, they may be extended to the temperature-dependent behavior of biological tissue, such as the change in temperature during uniaxial loading. The Holzapfel et al. three-dimensional two-layer elastic model for healthy artery tissue is shown to generate evolution equations by this construction for biaxial loading of a flat specimen. A simplified version of the Shah-Humphrey model for the elastodynamical behavior of a saccular aneurysm is extended to viscoelastic behavior.  相似文献   

3.
We hypothesize that both compression and elongation stress–strain data should be considered for modeling and simulation of soft tissue indentation. Uniaxial stress–strain data were obtained from in vitro loading experiments of porcine liver tissue. An axisymmetric finite element model was used to simulate liver tissue indentation with tissue material represented by hyperelastic models. The material parameters were derived from uniaxial stress–strain data of compressions, elongations, and combined compression and elongation of porcine liver samples. in vitro indentation tests were used to validate the finite element simulation. Stress–strain data from the simulation with material parameters derived from the combined compression and elongation data match the experimental data best. This is due to its better ability in modeling 3D deformation since the behavior of biological soft tissue under indentation is affected by both its compressive and tensile characteristics. The combined logarithmic and polynomial model is somewhat better than the 5-constant Mooney–Rivlin model as the constitutive model for this indentation simulation.  相似文献   

4.
A dual-indentation creep and stress relaxation methodology was developed and validated for the material characterization of very soft biological tissue within the framework of the biphasic poroviscoelastic (BPVE) constitutive model. Agarose hydrogel, a generic porous medium with mobile fluid, served as a mechanical tissue analogue for validation of the experimental procedure. Indentation creep and stress relaxation tests with a solid plane-ended cylindrical indenter were performed at identical sites on a gel sample with dimensions large enough with respect to indenter size in order to satisfy an infinite layer assumption. A finite element (FE) formulation coupled to a global optimization algorithm was utilized to simultaneously curve-fit the creep and stress relaxation data and extract the BPVE model parameters for the agarose gel. A numerical analysis with artificial data was conducted to validate the uniqueness of the computational procedure. The BPVE model was able to successfully cross-predict both creep and stress relaxation behavior for each pair of experiments with a single unique set of material parameters. Optimized elastic moduli were consistent with those reported in the literature for agarose gel. With the incorporation of appropriately-sized indenters to satisfy more stringent geometric constraints, this simple yet powerful indentation methodology can provide a straightforward means by which to obtain the BPVE model parameters of biological soft tissues that are difficult to manipulate (such as brain and adipose) while maintaining a realistic in situ loading environment.  相似文献   

5.
Soft tissue modelling has gained a great deal of importance, for a large part due to its application in surgical training simulators for minimally invasive surgery (MIS). This article provides a structured overview of different continuum-mechanical models that have been developed over the years. It aims at facilitating model choice for specific soft tissue modelling applications. According to the complexity of the model, different features of soft biological tissue will be incorporated, i.e. nonlinearity, viscoelasticity, anisotropy, heterogeneity and finally, tissue damage during deformation. A brief summary of experimental methods for material characterisation and an introduction to methods for geometric modelling are also provided. The overview is non-exhaustive, focusing on the most important general models and models with specific biological applications. A trade-off in complexity must be made for enabling real-time simulation, but still maintaining realistic representation of the organ deformation. Depending on the organ and tissue types, different models with emphasis on certain features will prove to be more appropriate, meaning the optimal model choice is organ and tissue-dependent.  相似文献   

6.
Soft tissue modelling has gained a great deal of importance, for a large part due to its application in surgical training simulators for minimally invasive surgery (MIS). This article provides a structured overview of different continuum-mechanical models that have been developed over the years. It aims at facilitating model choice for specific soft tissue modelling applications. According to the complexity of the model, different features of soft biological tissue will be incorporated, i.e. nonlinearity, viscoelasticity, anisotropy, heterogeneity and finally, tissue damage during deformation. A brief summary of experimental methods for material characterisation and an introduction to methods for geometric modelling are also provided.

The overview is non-exhaustive, focusing on the most important general models and models with specific biological applications. A trade-off in complexity must be made for enabling real-time simulation, but still maintaining realistic representation of the organ deformation. Depending on the organ and tissue types, different models with emphasis on certain features will prove to be more appropriate, meaning the optimal model choice is organ and tissue-dependent.  相似文献   

7.
Microindentation methods are commonly used to determine material properties of soft tissues at the cell or even sub-cellular level. In determining properties from force-displacement (FD) data, it is often assumed that the tissue is initially a stress-free, homogeneous, linear elastic half-space. Residual stress, however, can strongly influence such results. In this paper, we present a new microindentation method for determining both elastic properties and residual stress in soft tissues that, to a first approximation, can be regarded as a pre-stressed layer embedded in or adhered to an underlying relatively soft, elastic foundation. The effects of residual stress are shown using two linear elastic models that approximate specific biological structures. The first model is an axially loaded beam on a relatively soft, elastic foundation (i.e., stress-fiber embedded in cytoplasm), while the second is a radially loaded plate on a foundation (e.g., cell membrane or epithelium). To illustrate our method, we use a nonlinear finite element (FE) model and experimental FD and surface contour data to find elastic properties and residual stress in the early embryonic chick heart, which, in the region near the indenter tip, is approximated as an isotropic circular plate under tension on a foundation. It is shown that the deformation of the surface in a microindentation test can be used along with FD data to estimate material properties, as well as residual stress, in soft tissue structures that can be regarded as a plate under tension on an elastic foundation. This method may not be as useful, however, for structures that behave as a beam on a foundation.  相似文献   

8.
This article describes a series of contributions in the field of real-time simulation of soft tissue biomechanics. These contributions address various requirements for interactive simulation of complex surgical procedures. In particular, this article presents results in the areas of soft tissue deformation, contact modelling, simulation of cutting, and haptic rendering, which are all relevant to a variety of medical interventions. The contributions described in this article share a common underlying model of deformation and rely on GPU implementations to significantly improve computation times. This consistency in the modelling technique and computational approach ensures coherent results as well as efficient, robust and flexible solutions.  相似文献   

9.
This paper presents a nonlinearly elastic anisotropic microplane formulation in 3D for computational constitutive modeling of arterial soft tissue in the passive regime. The constitutive modeling of arterial (and other biological) soft tissue is crucial for accurate finite element calculations, which in turn are essential for design of implants, surgical procedures, bioartificial tissue, as well as determination of effect of progressive diseases on tissues and implants. The model presented is defined at a lower scale (mesoscale) than the conventional macroscale and it incorporates the effect of all the (collagen) fibers which are anisotropic structural components distributed in all directions within the tissue material in addition to that of isotropic bulk tissue. It is shown that the proposed model not only reproduces Holzapfel's recent model but also improves on it by accounting for the actual three-dimensional distribution of fiber orientation in the arterial wall, which endows the model with advanced capabilities in simulation of remodeling of soft tissue. The formulation is flexible so that its parameters could be adjusted to represent the arterial wall either as a single material or a material composed of several layers in finite element analyses of arteries. Explicit algorithms for both the material subroutine and the explicit integration with dynamic relaxation of equations of motion using finite element method are given. To circumvent the slow convergence of the standard dynamic relaxation and small time steps dictated by the stability of the explicit integrator, an adaptive dynamic relaxation technique that ensures stability and fastest possible convergence rates is developed. Incompressibility is enforced using penalty method with an updated penalty parameter. The model is used to simulate experimental data from the literature demonstrating that the model response is in excellent agreement with the data. An experimental procedure to determine the distribution of fiber directions in 3D for biological soft tissue is suggested in accordance with the microplane concept. It is also argued that this microplane formulation could be modified or extended to model many other phenomena of interest in biomechanics.  相似文献   

10.
Strain energy functions are derived from biphasic soft tissue models in order to describe large-deformation, large-swelling, elastic behavior of nonlinear materials. The resulting analysis leads to calculations of stress-extension relations and tissue fluid pressure. Also explored are the elastic stability of the biphasic tissue models and the manner in which tissue pressure is altered by material deformation.  相似文献   

11.
In vivo magnetic resonance image (MRI)-based computational models have been introduced to calculate atherosclerotic plaque stress and strain conditions for possible rupture predictions. However, patient-specific vessel material properties are lacking in those models, which affects the accuracy of their stress/strain predictions. A noninvasive approach of combining in vivo Cine MRI, multicontrast 3D MRI, and computational modeling was introduced to quantify patient-specific carotid artery material properties and the circumferential shrinkage rate between vessel in vivo and zero-pressure geometries. In vivo Cine and 3D multicontrast MRI carotid plaque data were acquired from 12 patients after informed consent. For each patient, one nearly-circular slice and an iterative procedure were used to quantify parameter values in the modified Mooney-Rivlin model for the vessel and the vessel circumferential shrinkage rate. A sample artery slice with and without a lipid core and three material parameter sets representing stiff, median, and soft materials from our patient data were used to demonstrate the effect of material stiffness and circumferential shrinkage process on stress/strain predictions. Parameter values of the Mooney-Rivlin models for the 12 patients were quantified. The effective Young's modulus (YM, unit: kPa) values varied from 137 (soft), 431 (median), to 1435 (stiff), and corresponding circumferential shrinkages were 32%, 12.6%, and 6%, respectively. Using the sample slice without the lipid core, the maximum plaque stress values (unit: kPa) from the soft and median materials were 153.3 and 96.2, which are 67.7% and 5% higher than that (91.4) from the stiff material, while the maximum plaque strain values from the soft and median materials were 0.71 and 0.293, which are about 700% and 230% higher than that (0.089) from the stiff material, respectively. Without circumferential shrinkages, the maximum plaque stress values (unit: kPa) from the soft, median, and stiff models were inflated to 330.7, 159.2, and 103.6, which were 116%, 65%, and 13% higher than those from models with proper shrinkage. The effective Young's modulus from the 12 human carotid arteries studied varied from 137 kPa to 1435 kPa. The vessel circumferential shrinkage to the zero-pressure condition varied from 6% to 32%. The inclusion of proper shrinkage in models based on in vivo geometry is necessary to avoid over-estimating the stresses and strains by up 100%. Material stiffness had a greater impact on strain (up to 700%) than on stress (up to 70%) predictions. Accurate patient-specific material properties and circumferential shrinkage could considerably improve the accuracy of in vivo MRI-based computational stress/strain predictions.  相似文献   

12.
We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of a solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. Absorption in the biological tissue increases as a consequence of flow-induced deformation for power law fluids. In most cases non-Newtonian results are compared with the viscous fluid case to magnify the differences.  相似文献   

13.
Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472±0.097 and the mean failure stress is 34.80±12.62 kPa. A first-order Ogden material model with ground-state shear modulus (μ) of 23.97±5.52 kPa and exponent (α1) of 3.66±1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.  相似文献   

14.
doi: 10.1111/j.1741‐2358.2011.00569.x Influence of different mucosal resiliency and denture reline on stress distribution in peri‐implant bone tissue during osseointegration. A three‐dimensional finite element analysis Objective: The aim of this study was to evaluate the influence of mucosal properties and relining material on the stress distribution in peri‐implant bone tissue during masticatory function with a conventional complete denture during the healing period through finite element analysis. Materials and Methods: Three‐dimensional models of a severely resorbed mandible with two recently placed implants in the anterior region were created and divided into the following situations: (i) conventional complete denture and (ii) relined denture with soft lining material. The mucosal tissue properties were divided into soft, resilient and hard. The models were exported to mechanical simulation software; two simulations were carried out with a load at the lower right canine (35 N) and the lower right first molar (50 N). Data were qualitatively evaluated using Maximum Principal Stress, in MPa, given by the software. Results: All models showed stress concentrations in the cortical bone corresponding to the cervical part of the implant. The mucosal properties influenced the stress in peri‐implant bone tissue showing a different performance according to the denture base material. The simulations with relined dentures showed lower values of stress concentration than conventional ones. Conclusions: It seems that the mucosal properties and denture reline have a high influence on the stress distribution in the peri‐implant bone during the healing period.  相似文献   

15.
The mechanical behavior of soft tissue demonstrates a number of complex features including nonlinearity, anisotropy, viscoelasticity, and growth. Characteristic features of the time-dependent and anisotropic behavior are related to the properties of various components of the tissue such as fibrous collagen and elastin networks, large proteins and sugars attached to these networks, and interstitial fluid. Attempts to model the elastic behavior of these tissues based on assumptions about the behavior of the underlying constituents have been reasonably successful, but the essential addition of viscoelasticity to these models has been met with varying success. Here, a new rheological network model is proposed using, as its basis, an orthotropic hyperelastic constitutive model for fibrous tissue and a viscoelastic reptation model for soft materials. The resulting model has been incorporated into numerical and computational models, and is shown to capture the mechanical behavior of soft tissue in various modes of deformation including uniaxial and biaxial tension and simple shear.  相似文献   

16.
In contrast to the widely applied approach to model soft tissue remodeling employing the concept of volumetric growth, microstructurally motivated models are capable of capturing many of the underlying mechanisms of growth and remodeling; i.e., the production, removal, and remodeling of individual constituents at different rates and to different extents. A 3-dimensional constrained mixture computational framework has been developed for vascular growth and remodeling, considering new, microstructurally motivated kinematics and constitutive equations and new stress and muscle activation mediated evolution equations. Our computational results for alterations in flow and pressure, using reasonable physiological values for rates of constituent growth and turnover, concur with findings in the literature. For example, for flow-induced remodeling, our simulations predict that, although the wall shear stress is restored completely, the circumferential stress is not restored employing realistic physiological rate parameters. Also, our simulations predict different levels of thickening on inner versus outer wall locations, as shown in numerous reports of pressure-induced remodeling. Whereas the simulations are meant to be illustrative, they serve to highlight the experimental data currently lacking to fully quantify mechanically mediated adaptations in the vasculature.  相似文献   

17.
In this study, we evaluated computational efficiency of finite element (FE) simulations when a numerical approximation method was used to obtain the tangent moduli. A fiber-reinforced hyperelastic material model for nearly incompressible soft tissues was implemented for 3D solid elements using both the approximation method and the closed-form analytical method, and validated by comparing the components of the tangent modulus tensor (also referred to as the material Jacobian) between the two methods. The computational efficiency of the approximation method was evaluated with different perturbation parameters and approximation schemes, and quantified by the number of iteration steps and CPU time required to complete these simulations. From the simulation results, it can be seen that the overall accuracy of the approximation method is improved by adopting the central difference approximation scheme compared to the forward Euler approximation scheme. For small-scale simulations with about 10,000 DOFs, the approximation schemes could reduce the CPU time substantially compared to the closed-form solution, due to the fact that fewer calculation steps are needed at each integration point. However, for a large-scale simulation with about 300,000 DOFs, the advantages of the approximation schemes diminish because the factorization of the stiffness matrix will dominate the solution time. Overall, as it is material model independent, the approximation method simplifies the FE implementation of a complex constitutive model with comparable accuracy and computational efficiency to the closed-form solution, which makes it attractive in FE simulations with complex material models.  相似文献   

18.
Recent research has shown that hyperelastic properties of the plantar soft tissue consisting of adipose tissue and fibrous septa change from region to region. However, relatively little research has been conducted to develop analytical or computational models to describe the region-specific behavior of the plantar soft tissue. The objective of the research is to develop a region-specific constitutive model of the plantar soft tissue. Plantar soft tissue specimens were dissected from six regions [subcalcaneal (CA), sublateral (LA), subnavicular (Nav), 1st, 3rd, and 5th submetatarsal (M1, M3, M5)] from cadaveric foot samples, and a picrosirius red staining technique was used to visualize the collagen fibers in fibrous septa. The volume fractions of adipose tissue and fibrous septa and the volume fractions of the principal orientations of the fibrous septa were calculated with the intensity gradient method. Region-specific constitutive models were then developed in finite element analysis considering the microstructure of the plantar soft tissue. The hyperelastic region specific material properties of the plantar soft tissue were validated with experimental unconfined compression tests and indentation tests from the literature. The results show that the models give reasonable predictions of the stiffness of the soft tissue within a standard deviation of the tests. The region-specific constitutive models help to explain how changes in the constituents are related to mechanical behavior of the soft tissue on a region specific basis.  相似文献   

19.
20.
Traditionally, the complex mechanical behavior of planar soft biological tissues is characterized by (multi)axial tensile testing. While uniaxial tests do not provide sufficient information for a full characterization of the material anisotropy, biaxial tensile tests are difficult to perform and tethering effects limit the analyses to a small central portion of the test sample. In both cases, determination of local mechanical properties is not trivial. Local mechanical characterization may be performed by indentation testing. Conventional indentation tests, however, often assume linear elastic and isotropic material properties, and therefore these tests are of limited use in characterizing the nonlinear, anisotropic material behavior typical for planar soft biological tissues. In this study, a spherical indentation experiment assuming large deformations is proposed. A finite element model of the aortic valve leaflet demonstrates that combining force and deformation gradient data, one single indentation test provides sufficient information to characterize the local material behavior. Parameter estimation is used to fit the computational model to simulated experimental data. The aortic valve leaflet is chosen as a typical example. However, the proposed method is expected to apply for the mechanical characterization of planar soft biological materials in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号