首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Honda K  Natsumi Y  Urade M 《Gerodontology》2008,25(4):251-257
Objectives: The relationship of bony changes in the condylar surfaces in articular disc displacement without reduction in temporomandibular joint (TMJ) was investigated using diagnostic imaging. The study also evaluated whether the bony changes in the condylar surfaces limit disc and condyle motion, and produce pathological joint sounds. Materials and methods: Thirty‐seven joints in 28 patients diagnosed with degenerative bony changes in the condylar surfaces radiographically and anterior disc displacement without reduction using magnetic resonance imaging (MRI) were studied. The bony changes were assessed by radiographic examination and classified into two types: pathological bone changes (PBCs) including erosion, osteophyte formation and deformity, and adaptive bone changes (ABCs) including flattening and concavity. MRI was performed on the TMJ to examine the configuration and position of the discs. Joint sounds in the TMJ were determined using electrovibratograghy with a joint vibration analysis. Results: The articular disc motion to the condyle in the PBC group was smaller than in the ABC group irrespective of the configuration of the disc, even though there were no significant differences between the two types of bony changes in the disc position during jaw closing. The joint vibration analysis of the TMJ showed that joint sounds with a higher frequency were observed in the PBC group than in the ABC group. High energy levels needed to produce the higher frequencies (over 300 Hz) were observed only in the PBC group.  相似文献   

2.
The goal of this study was to investigate the impact of cam impingement, a biomechanical risk factor, on hip joint degeneration and ultimately coxarthrosis. 3D finite element solid models of a healthy and a pathologic hip were developed based on clinical reports. The biphasic characteristics of cartilaginous tissues were considered to identify localised solid matrix overloading during normal walking and sitting down (SD). Localised femoral intrusion at the anterior-superior pelvic horn was revealed in the pathologic hip during SD, where the radial and meridional solid stresses in the acetabular cartilage and circumferential solid stresses within the acetabular labrum increased by 3.7, 1.5 and 2.7 times, respectively. The increased solid-on-solid stresses, reduction in fluid-load support and associated higher friction during articulation may result in joint wear and other degenerative changes in the hip.  相似文献   

3.
    
Four different structural models of artificial joints were developed and the finite element method (FEM) was employed to investigate their mechanical characteristics under static and dynamic conditions. The materials used in the FEM calculation were ultra-high molecular weight polyethylene (UHMWPE), 316L stainless steel, CoCrMo alloy and Ti6A14V alloy. The stress distribution, strain, and elastic deformation under static and dynamic conditions were obtained. Analysis and comparison of the ~alculation results of different models were conducted. It is shown that with the same parameters the model of a metallic femur head covered with an artificial cartilage layer is more similar to the structure of the natural human joint and its mechanical characteristics are the best of the four models.  相似文献   

4.
doi: 10.1111/j.1741‐2358.2011.00552.x Study of temporomandibular joint disorder in older patients by magnetic resonance imaging (MRI) Objectives: To compare characteristics in older patients in a sample of the general population of those with temporomandibular joint disorder (TMJD). Materials and methods: A prospective study was carried out between 2001 and 2008 in patients with TMJD. The whole sample consisted of 141 patients divided in two groups: 31 patients aged over 60 (median age 67.9, ranging from 60 to 82) and the remaining 110 patients (median age 36.3, ranging from 12 to 59) who were seeking treatment. Clinical diagnostics was confirmed by MRI. Pain intensity was rated on a visual analogue scale (VAS 0‐10). Results: There was no statistical difference between average pain in older patients (6.2) and patients aged up to 59 (5.7) evaluated by VAS. There was a statistically significant difference (p = 0.002) in pain duration: older patients reported shorter duration of experienced pain (7.8 months) than patients aged up to 59 (12.2 months). Conclusion: In this study, it was found that 22% were older patients with TMJD. A higher level of anxiety was shown in both patients’ groups, regardless of shorter pain experience in the older patients.  相似文献   

5.
doi: 10.1111/j.1741‐2358.2011.00574.x
Prevalence of temporomandibular disorders in a population of complete denture wearers Background: Complete tooth loss among the elderly is still frequent in developing countries and the incidence of temporomandibular disorders (TMD) is a common finding in complete denture wearers. Objectives: The aim of this study was to evaluate the prevalence of temporomandibular disorders (TMD) in a population of complete denture wearers. Materials and Methods: The data were collected by four examiners for the diagnosis of use and need for complete dentures followed by the World Health Organization standards and interviews for TMD signs and symptoms evaluation. Exploratory variables included demographic, socio‐economic status and TMD prevalence. Results: The prevalence of TMD among denture wearers was 55.12%. Chi‐squared test showed no statistical difference between subjects with or without TMD for gender, geographical location and skin colour (p < 0.05). The number of subjects with TMD increased as the period of complete denture wear increased, although no statistical difference between groups were found (p < 0.05). Conclusions: There is a need of educational programmes aiming at the importance of health care and periodical change of a complete denture, and strategies with a preventive approach to quality general dental care.  相似文献   

6.
Knee osteoarthritis (OA) is believed to result from high levels of contact stresses on the articular cartilage and meniscus after meniscal damage. This study investigated the effect of meniscal tears and partial meniscectomies on the peak compressive and shear stresses in the human knee joint. An elaborate three-dimensional finite element model of knee joint including bones, articular cartilages, menisci and main ligaments was developed from computed tomography and magnetic resonance imaging images. This model was used to model four types of meniscal tears and their resultant partial meniscectomies and analysed under an axial 1150 N load at 0° flexion. Three different conditions were compared: a healthy knee joint, a knee joint with medial meniscal tears and a knee joint following partial meniscectomies. The numerical results showed that each meniscal tear and its resultant partial meniscectomy led to an increase in the peak compressive and shear stresses on the articular cartilages and meniscus in the medial knee compartment, especially for partial meniscectomy. Among the four types of meniscal tears, the oblique tear resulted in the highest values of the peak compressive and shear stresses. For the four partial meniscectomies, longitudinal meniscectomy led to the largest increase in these two stresses. The lateral compartment was minimally affected by all the simulations. The results of this study demonstrate meniscal tear and its resultant partial meniscectomy has a positive impact on the maintenance of high levels of contact stresses, which may improve the progression of knee OA, especially for partial meniscectomy. Surgeons should adopt a prudent strategy to preserve the greatest amount of meniscus possible.  相似文献   

7.
The Coflex device may provide stability to the surgical segment in extension but does not restore stability in other motion. Recently, a modified version called the Coflex rivet has been developed. The effects of Coflex and Coflex rivet implantation on the adjacent segments are still not clear; therefore, the purpose of this study was to investigate the biomechanical differences between Coflex and Coflex rivet implantation by using finite element analyses. The results show that the Coflex implantation can provide stability in extension, lateral bending, and axial rotation at the surgical segment, and it had no influence at adjacent segments except for extension. The Coflex rivet implantation can provide stability in all motions and reduce disc annulus stress at the surgical segment. Therefore, the higher range of motion and stress induced by the Coflex rivet at both adjacent discs may result in adjacent segment degeneration in flexion and extension.  相似文献   

8.
Although a human eye comprises less than 0.1% of the frontal body surface area, injuries to the eye are found to be disproportionally common in survivors of explosions. This study aimed to introduce a Lagrangian–Eulerian coupling model to predict globe rupture resulting from primary blast effect. A finite element model of a human eye was created using Lagrangian mesh. An explosive and its surrounding air domain were modelled using Eulerian mesh. Coupling the two models allowed simulating the blast wave generation, propagation and interaction with the eye. The results showed that the peak overpressures caused by blast wave on the corneal apex are 2080, 932.1 and 487.3 kPa for the victim distances of 0.75, 1.0 and 1.25 m, respectively. Higher stress occurred at the limbus, where the peaks for the three victim distances are 25.5, 14.1 and 6.4 MPa. The overpressure threshold of globe rupture was determined as 2000 kPa in a small-scale explosion. The findings would provide insights into the mechanism of primary blast-induced ocular injuries.  相似文献   

9.
10.
The purpose of this study is to measure the failure risk of a crown depending on the cusp angle. Three all-ceramic crown models consisting of CH (high incline), CM (middle incline), and CL (low incline) are designed. Stress is applied to the crown with Loading case-1 (top of cusp tip) and Loading case-2 (middle of cusp ridge) with the use of FEA software. In Loading case-1 and case-2, the CH showed the highest Maximum Principal Stress (MPS) while the CL showed the lowest MPS. The cusp angle is an influential factor affecting stress distribution in dental crowns.  相似文献   

11.
In post-core crown restorations, the significant mismatch between stiffness of artificial crowns and dental tissues leads to stress concentration at the interfaces. The aim of the present study was to reduce the destructive stresses by using a class of inhomogeneous materials called functionally graded materials (FGMs). For the purpose of the study, a 3-dimentional computer model of a premolar tooth and its surrounding tissues were generated. A post-core crown restoration with various crown materials, homogenous and FGM materials, were simulated and analyzed by finite element method. Finite element and statistical analysis showed that, in case of oblique loading, a significant difference (p < 0.05) was found at the maximum von Mises stresses of the crown margin between FGM and homogeneous crowns. The maximum von Mises stresses of the crown margin generated by FGM crowns were lower than those generated by homogenous crowns (70.8 vs. 46.3 MPa) and alumina crown resulted in the highest von Mises stress at the crown margin (77.7 MPa). Crown materials of high modulus of elasticity produced high stresses at the cervical region. FGM crowns may reduce the stress concentration at the cervical margins and consequently reduce the possibility of fracture.  相似文献   

12.
13.
Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional–integral–derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip–ankle anterior–posterior (A–P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressive joint load, medial–lateral load distribution or varus-valgus torque, internal–external torque, A–P force) for deep knee bend, chair rise, stance-phase gait and step-down activities.  相似文献   

14.
The aim of this study was to investigate the stress distribution generated in a veneer restoration of an upper central incisor compared to intact teeth using the finite element analysis after applying a lingual buccal loading at the incisal edge. Methods: Two models were developed: one model contained enamel, dentine, cementum, periodontal ligament, cortical and trabecullar bones, and the other model was a veneer restoration; both models were developed using MSC/Nastran software (MacNeal-Schwendler Corporation, Los Angeles, CA, USA) as the pre- and post-processor. A 10-N load was applied at the incisal edge from the lingual to the buccal side to simulate oral conditions in this area (protrusion). Results: Von Mises stresses were then analysed for three different regions: A-B (enamel elements under the veneer or second enamel layer), A′-B′ (buccal enamel and/or veneer element layer) and C-D (lingual enamel elements layer). A higher stress mode was observed for both models at the lingual cervical region. Conclusions: The presence of a veneer restoration on the incisors is a good alternative to mimic the behaviour of enamel under protrusion loading conditions. The use of veneers to replace enamel during rehabilitations is recommended.  相似文献   

15.
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage.  相似文献   

16.
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1–L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.  相似文献   

17.
Data has been published that quantifies the nonlinear, anisotropic material behaviour and pre-strain behaviour of the anterior longitudinal, supraspinous (SSL), and interspinous ligaments of the human lumbar spine. Additionally, data has been published on localized material properties of the SSL. These results have been incrementally incorporated into a previously validated finite element model of the human lumbar spine. Results suggest that the effects of increased ligament model fidelity on bone strain energy were moderate and the effects on disc pressure were slight, and do not justify a change in modelling strategy for most clinical applications. There were significant effects on the ligament stresses of the ligaments that were directly modified, suggesting that these phenomena should be included in FE models where ligament stresses are the desired metric.  相似文献   

18.
Most tissue-engineered cartilage constructs are more compliant than native articular cartilage (AC) and are poorly integrated to the surrounding tissue. To investigate the effect of an implanted tissue-engineered construct (TEC) with these inferior properties on the mechanical environment of both the engineered and adjacent native tissues, a finite element study was conducted. Biphasic swelling was used to model tibial cartilage and an implanted TEC with the material properties of either native tissue or a decreased elastic modulus and fixed charged density. Creep loading was applied with a rigid impermeable indenter that represented the femur. In comparison with an intact joint, compressive strains in the transplant, surface contact stress in the adjacent native AC and load partitioning between different phases of cartilage were affected by inferior properties of TEC. Results of this study may lead to a better understanding of the complex mechanical environment of an implanted TEC.  相似文献   

19.
Until recently, heart valve failure has been treated adopting open-heart surgical techniques and cardiopulmonary bypass. However, over the last decade, minimally invasive procedures have been developed to avoid high risks associated with conventional open-chest valve replacement techniques. Such a recent and innovative procedure represents an optimal field for conducting investigations through virtual computer-based simulations: in fact, nowadays, computational engineering is widely used to unravel many problems in the biomedical field of cardiovascular mechanics and specifically, minimally invasive procedures. In this study, we investigate a balloon-expandable valve and we propose a novel simulation strategy to reproduce its implantation using computational tools. Focusing on the Edwards SAPIEN valve in particular, we simulate both stent crimping and deployment through balloon inflation. The developed procedure enabled us to obtain the entire prosthetic device virtually implanted in a patient-specific aortic root created by processing medical images; hence, it allows evaluation of postoperative prosthesis performance depending on different factors (e.g. device size and prosthesis placement site). Notably, prosthesis positioning in two different cases (distal and proximal) has been examined in terms of coaptation area, average stress on valve leaflets as well as impact on the aortic root wall. The coaptation area is significantly affected by the positioning strategy ( ? 24%, moving from the proximal to distal) as well as the stress distribution on both the leaflets (+13.5%, from proximal to distal) and the aortic wall ( ? 22%, from proximal to distal). No remarkable variations of the stress state on the stent struts have been obtained in the two investigated cases.  相似文献   

20.
Clinically, different foot arch heights are associated with different tissue injuries to the foot. To investigate the possible factors contributing to the difference in foot arch heights, previous studies have mostly measured foot pressure in either low-arched or high-arched feet. However, little information exists on stress variation inside the foot with different arch heights. Therefore, this study aimed to implement the finite element (FE) method to analyse the influence of different foot arches. This study established a 3D foot FE model using software ANSYS 11.0. After validating the FE model, this study created low-arched, high-arched and normal-arched foot FE models. The FE analysis found that both the stress and strain on the plantar fascia and metatarsal were higher in the high-arched foot, whereas the stress and strain on the calcaneous, navicular and cuboid were higher in low-arched foot. Additionally, forefoot pressure was increased with an increase in arch height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号