首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoenolpyruvate carboxykinase (GTP) was induced by a combination of dibutyryl cyclic AMP, theophyline and dexamethasone in Reuber H35 hepatoma cells under conditions where an amino acid in the medium was replaced by an appropriate analogue. 2. With canavanine replacing arginine or with 5-fluorotryptophan or 6-fluorotryptophan replacing tryptophan the induced enzyme had a lower catalytic activity-relative to antibody reactivity. 3. These aberrant enzyme molecules were heat-labile in vitro. 4. Measurements of enzyme degradation in vivo indicated that the canavanine-containing enzyme and the 6-fluorotryptophan-containing enzyme were degraded more rapidly than the enzyme containing all natural amino acids.  相似文献   

2.
Escherichia coli 4-fluorotryptophan-substituted arginyl-tRNA synthetase was biosynthetically prepared and purified from a tryptophan auxotroph which could overproduce this enzyme. A method was developed to separate 4-fluorotryptophan from tryptophan and to determine accurately their contents in the 4-fluorotryptophan-containing proteins. It was confirmed that more than 95% of the tryptophan residues in the purified 4-fluorotryptophan-substituted arginyl-tRNA synthetase were replaced by 4-fluorotryptophan. Studies on the effect of the 4-fluorotryptophan replacement on properties of the enzyme showed that, when compared with the native enzyme, both the specific activity and the first-order rate constant of the fluorinated enzyme decreased by approximately 20% with just slightly higher K m values. CD studies, however, did not reveal any difference between the secondary structure of the native and fluorinated enzymes. In addition, thermal unfolding studies showed that the 4-fluorotryptophan replacement did not significantly affect the thermal stability of the enzyme. We may conclude that the substitution of 4-fluorotryptophan in arginyl-tRNA synthetase had no substantial effect on the structure and function of the enzyme. Finally, a preliminary study of 19F nuclear magnetic resonance spectroscopy of the fluorinated enzyme has shown promising prospect for further investigation of its structure and function with NMR.  相似文献   

3.
Escherichia coli 4-fluorotryptophan-substituted arginyl-tRNA synthetase was biosynthetically prepared and purified from a tryptophan auxotroph which could overproduce this enzyme. A method was developed to separate 4-fluorotryptophan from tryptophan and to determine accurately their contents in the 4-fluorotryptophan-containing proteins. It was confirmed that more than 95% of the tryptophan residues in the purified 4-fluorotryptophan-substituted arginyl-tRNA synthetase were replaced by 4-fluorotryptophan. Studies on the effect of the 4-fluorotryptophan replacement on properties of the enzyme showed that, when compared with the native enzyme, both the specific activity and the first-order rate constant of the fluorinated enzyme decreased by approximately 20% with just slightly higher K m values. CD studies, however, did not reveal any difference between the secondary structure of the native and fluorinated enzymes. In addition, thermal unfolding studies showed that the 4-fluorotryptophan replacement did not significantly affect the thermal stability of the enzyme. We may conclude that the substitution of 4-fluorotryptophan in arginyl-tRNA synthetase had no substantial effect on the structure and function of the enzyme. Finally, a preliminary study of 19F nuclear magnetic resonance spectroscopy of the fluorinated enzyme has shown promising prospect for further investigation of its structure and function with NMR.  相似文献   

4.
The non-fluorescence of 4-fluorotryptophan.   总被引:2,自引:0,他引:2       下载免费PDF全文
The derivative 4-fluorotryptophan was confirmed to have negligible fluorescence at 25 degrees C and 285 nm (tryptophan/4-fluorotryptophan quantum-yield ratio greater than 100:1). However, photolysis experiments on tryptophan and 4-fluorotryptophan, in which loss of starting material was measured by reverse-phase h.p.l.c., demonstrated that 4-fluorotryptophan was significantly more photochemically active than the parent tryptophan, with the 4-fluorotryptophan photolysis quantum yield being 7 times larger than that of tryptophan at 25 degrees C and 285 nm. In addition, at 77 K and 275 nm 4-fluorotryptophan displayed strong fluorescence and phosphorescence, with emission quantum yields comparable with those of tryptophan at 77 K and 275 nm.  相似文献   

5.
Mohammadi F  Prentice GA  Merrill AR 《Biochemistry》2001,40(34):10273-10283
Previously, we characterized the role of the three naturally occurring Trp residues (W-417, -466, and -558) in the catalytic mechanism of the toxin-enzyme produced by Pseudomonas aeruginosa [Beattie and Merrill (1999) J. Biol. Chem. 274, 15646-15654]. However, the use of intrinsic Trp fluorescence to study toxin-eEF-2 interaction is inherently limited since the spectral properties of the various Trp residues in both proteins cannot easily be distinguished. To facilitate the study of the protein-protein interaction by Trp fluorescence spectroscopy, the Trp residues in the catalytic domain of exotoxin A were replaced with the amino acid analogues 4-fluorotryptophan, 5-fluorotryptophan, 5-hydroxytryptophan, and 7-azatryptophan. The incorporation of analogues was achieved by using a tightly regulated promoter, pBAD, and expressing the protein in a Trp auxotrophic strain of Escherichia coli, BL21, in a minimal medium containing the appropriate tryptophan analogue. Quantitative spectral analysis of the analogue-containing proteins using the Decompose program indicated that we had achieved 87-100% incorporation efficiency depending on the Trp analogue being used. Electrospray mass spectrometry analysis verified that we had achieved nearly total replacement of the L-tryptophan residues within the catalytic domain of exotoxin A with the tryptophan analogues 5-fluorotryptophan and 4-fluorotryptophan. The analogue-substituted proteins showed a variation in their catalytic activities with k(cat) values ranging from 6-fold (4-fluorotryptophan) to 260-fold (5-hydroxytryptophan) lower than the natural enzyme, which was in agreement with previous data using site-directed mutagenesis [Beattie et al. (1996) Biochemistry 35, 15134-15142]. However, the analogue-incorporated enzymes did not show any significant change in their ability to bind NAD(+) as substrate, as determined from a fluorescence-binding assay. The spectral properties of the various analogue-incorporated proteins were evaluated and compared with those of the native protein. Furthermore, selective excitation of the 5-hydroxytryptophan-incorporated toxin was exploited to study its interaction with the elongation factor-2 substrate by fluorescence resonance energy transfer to an acceptor chromophore located on the elongation factor-2 protein. The binding between the toxin-enzyme and elongation factor-2 was shown to be independent of the NAD(+) substrate (983 +/- 63 nM) and showed a small dependence upon the ionic strength of the solution.  相似文献   

6.
Rat cellular retinol-binding protein II (CRBP II) is a 15.6-kDa intestinal protein which binds all-trans-retinol and all-trans-retinal but not all-trans-retinoic acid. We have previously analyzed the interaction of Escherichia coli-derived rat apoCRBP II with several retinoids using fluorescence spectroscopic techniques. Interpretation of these experiments is complicated, because the protein has 4 tryptophan residues. To further investigate ligand-protein interactions, we have utilized 19F nuclear magnetic resonance (NMR) spectroscopy of CRBP II labeled at its 4 tryptophan residues with 6-fluorotryptophan. Efficient incorporation of 6-fluorotryptophan (93%) was achieved by growing a tryptophan auxotroph of E. coli harboring a prokaryotic expression vector with a full-length rat CRBP II cDNA on defined medium supplemented with the analog. Comparison of the 19F NMR spectra of 6-fluorotryptophan-substituted CRBP II with and without bound all-trans-retinol revealed that resonances corresponding to 2 tryptophan residues (designated WA and WB) undergo large downfield changes in chemical shifts (2.0 and 0.5 ppm, respectively) associated with ligand binding. In contrast, 19F resonances corresponding to two other tryptophan residues (WC and WD) undergo only minor perturbations in chemical shifts. The 19F NMR spectra of 6-fluorotryptophan-substituted CRBP II complexed with all-trans-retinal and all-trans-retinol were very similar, suggesting that the interactions of these two ligands with the protein are similar. Molecular model building, based on the crystalline structures of two homologous proteins was used to predict the positions of the 4 tryptophan residues of CRBP II and to make tentative resonance assignments. The fact that ligand binding produced residue-specific changes in the chemical shifts of resonances in CRBP II suggests that NMR analysis of isotopically labeled retinoid-binding proteins expressed in E. coli will provide an alternate, albeit it complementary, approach to fluorescence spectroscopy for examining the structural consequences of their association with ligand.  相似文献   

7.
Carbon catabolite repression allows bacteria to rapidly alter the expression of catabolic genes in response to the availability of metabolizable carbon sources. In Bacillus subtilis, this phenomenon is controlled by the HPr kinase (HprK) that catalyzes ATP-dependent phosphorylation of either HPr (histidine containing protein) or Crh (catabolite repression HPr) on residue Ser-46. We report here that B. subtilis HprK forms homo-oligomers constituted most likely of eight subunits. Related to this complex structure, the enzyme displays strong positive cooperativity for the binding of its allosteric activator, fructose 1,6-bisphosphate, as evidenced by either kinetics of its phosphorylation activity or the intrinsic fluorescence properties of its unique tryptophan residue, Trp-235. It is further shown that activation of HPr phosphorylation by fructose 1,6-bisphosphate essentially occurs at low ATP and enzyme concentrations. A positive cooperativity was also detected for the binding of natural nucleotides or their 2'(3')-N-methylanthraniloyl derivatives, in either phosphorylation or fluorescence experiments. Most interestingly, quenching of the HprK tryptophan fluorescence by using either iodide or acrylamide revealed a heterogeneity of tryptophan residues within the population of oligomers, suggesting that the enzyme exists in two different conformations. This result suggests a concerted-symmetry model for the catalytic mechanism of positive cooperativity displayed by HprK.  相似文献   

8.
Pritikin, William B. (University of California, Los Angeles), and W. R. Romig. Death of Bacillus subtilis auxotrophs due to deprivation of thymine, tryptophan, or uracil, J. Bacteriol. 92:291-296. 1966.-Auxotrophic mutants of Bacillus subtilis 168 that require either tryptophan, uracil, or thymine died rapidly when deprived of any of these compounds. Phage PBS1 was produced by infected B. subtilis 168 (thy try-2) deprived of thymine. Phage PBS1 was not produced by infected B. subtilis 168 (try-2) deprived of tryptophan or infected B. subtilis 168-15 (try-2 ura) deprived of uracil. B. subtilis 168 thy try-2 and 168-15 could be transduced by phage PBS1 after prolonged deprivation of tryptophan or uracil, respectively. When B. subtilis 168-15 was transduced to uracil independence by phage PBS1, the uracil-independent transductants became immune to uracil-less death within 10 min of exposure to phage, and began to multiply within 2 hr after exposure to phage at an incubation temperature of 46 C.  相似文献   

9.
Escherichia coli isolates that were tolerant of incorporation of high proportions of 4-fluorotryptophan were evolved by serial growth. The resultant strain still preferred tryptophan for growth but showed improved growth relative to the parental strain on other tryptophan analogues. Evolved clones fully substituted fluorotryptophan for tryptophan in their proteomes within the limits of mass spectral and amino acid analyses. Of the genes sequenced, many genes were found to be unaltered in the evolved strain; however, three genes encoding enzymes involved in tryptophan uptake and utilization were altered: the aromatic amino acid permease (aroP) and tryptophanyl-tRNA synthetase (trpS) contained several amino acid substitutions, and the tyrosine repressor (tyrR) had a nonsense mutation. While kinetic analysis of the tryptophanyl-tRNA synthetase suggests discrimination against 4-fluorotryptophan, an analysis of the incorporation and growth patterns of the evolved bacteria suggest that other mutations also aid in the adaptation to the tryptophan analogue. These results suggest that the incorporation of unnatural amino acids into organismal proteomes may be possible but that extensive evolution may be required to reoptimize proteins and metabolism to accommodate such analogues.  相似文献   

10.
11.
Several properties of the major proteins degraded during germination of spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis have been compared. All of the proteins had low molecular weights (6,000 to 13,000) and lacked cysteine, cystine, and tryptophan. The proteins could be subdivided into two groups: group I (B. megaterium A and C proteins, B. cereus A protein, and B. subtilis alpha and beta proteins) and group II (B. cereus and B. megaterium B proteins and B. subtilis gamma protein). Species in group II had lower levels of (or lacked) the amino acids isoleucine, leucine, methionine, and proline. Similarly, proteins in each group were more closely related immunologically. However, antisera against a B. megaterium group I protein cross-reacted more strongly with the B. megaterium group II protein than with group I proteins from other spore species, whereas antisera against the B. megaterium group II protein cross-reacted most strongly with B. megaterium group I proteins. Analysis of the primary sequences at the amino termini and in the regions of the B. cereus and B. subtilis proteins cleaved by the B. megaterium spore protease revealed that the B. cereus A protein was most similar to the B. megaterium A and C proteins, and the B. cereus B protein and the B. subtilis gamma protein were most similar to the B. megaterium B protein. However, amino terminal sequences within one group of proteins varied considerably, whereas the spore protease cleavage sites were more highly conserved.  相似文献   

12.
The tryptophanyl-tRNA synthetase from Bacillus subtilis was purified to homogeneity and characterized. It has an alpha 2 subunit structure and a molecular weight of 77,000. Tryptophanyl-tRNA synthetase does not catalyze any significant proofreading. It activates tryptophan as well as the three fluorinated analogues, DL-4-fluoro-, DL-5-fluoro-, or DL-6-fluorotryptophan (4F-, 5F-, and 6F-Trp), in the ATP-pyrophosphate exchange reaction. In the aminoacylation reaction, the fluorotryptophans act as competitive inhibitors of Trp. Their relative activities follow the same order in both reactions: Trp greater than 4F-Trp greater than 6F-Trp greater than 5F-Trp. This order is the inverse of the order of relative hydrophobicities of these compounds, pointing to the importance of hydrophobic interactions in the selective recognition by tryptophanyl-tRNA synthetase among this group of substrates. To define the physical basis of the relative hydrophobicities, the crystallographic structure of 4F-Trp was determined and compared to that of trptophan. Charge distributions calculated for tryptophan and its different fluoroanalogues on the basis of molecular structures were supported by their carbon-13 NMR spectra. Correlations between charge distributions and relative hydrophobicities suggest that the polarity of the C-F bond represents an underlying factor determining the hydrophobicities of 4F-, 5F-, and 6F-Trp, thus relating tryptophanyl-tRNA synthetase selectivity toward tryptophan and its fluoroanalogues directly to their electronic configurations.  相似文献   

13.
Fluorine NMR experiments with a protein containing fluorinated amino acid analogs can often be used to probe structure and dynamics of the protein as well as conformational changes produced by binding of small molecules. The relevance of NMR experiments with fluorine-containing materials to characteristics of the corresponding native (nonfluorinated) proteins depends upon the extent to which these characteristics are altered by the presence of fluorine. The present work uses molecular dynamics simulations to explore the effects of replacement of tryptophan by 6-fluorotryptophan in folate and methotrexate complexes of the enzyme dihydrofolate reductase (DHFR) (Escherichia coli). Simulations of the folate-native enzyme complex produce local correlation times and order parameters that are generally in good agreement with experimental values. Simulations of the corresponding fluorotryptophan-containing system indicate that the structure and dynamics of this complex are scarcely changed by the presence of fluorinated amino acids. Calculations with the pharmacologically important methotrexate-enzyme complex predict dynamical behavior of the protein similar to that of the folate complex for both the fluorinated and native enzyme. It thus appears that, on the time scale sampled by these computer simulations, substitution of 6-fluorotryptophan for tryptophan has little effect on either the structures or dynamics of DHFR in these complexes.  相似文献   

14.
The apoflavodoxin protein from Azotobacter vinelandii harboring three tryptophan (Trp) residues, was biosynthetically labeled with 5-fluorotryptophan (5-FTrp). 5-FTrp has the advantage that chemical differences in its microenvironment can be sensitively visualized via 19F NMR. Moreover, it shows simpler fluorescence decay kinetics. The occurrence of FRET was earlier observed via the fluorescence anisotropy decay of WT apoflavodoxin and the anisotropy decay parameters are in excellent agreement with distances between and relative orientations of all Trp residues. The anisotropy decay in 5-FTrp apoflavodoxin demonstrates that the distances and orientations are identical for this protein. This work demonstrates the added value of replacing Trp by 5-FTrp to study structural features of proteins via 19F NMR and fluorescence spectroscopy.  相似文献   

15.
A tryptophanyl-transfer ribonucleic acid (tRNA) synthetase (l-tryptophan: tRNA ligase adenosine monophosphate, EC 6.1.1.2) mutant (trpS1) of Bacillus subtilis is derepressed for enzymes of the tryptophan biosynthetic pathway at temperatures which reduce the growth rate but still allow exponential growth. Derepression of anthranilate synthase in a tryptophan-supplemented medium (50 mug/ml) is maximal at 36 C, and the differential rate of synthesis is 600- to 2,000-fold greater than that of the wild-type strain or trpS1 revertants. A study of the derepression pattern in the mutant and its revertants indicates that the 5-fluorotryptophan recognition site of the tryptophanyl-tRNA synthetase is an integral part of the repression mechanism. Evidence for a second locus, unlinked to the trpS1 locus, which functions in the repression of tryptophan biosynthetic enzymes is presented.  相似文献   

16.
19F nuclear magnetic resonance (19F NMR) of 5-fluorotryptophan (5F-Trp) and tryptophan (Trp) fluorescence both provide information about local environment and solvent exposure of Trp residues. To compare the information provided by these spectroscopies, the four Trp residues in recombinant soluble human tissue factor (sTF) were replaced with 5F-Trp. 19F NMR assignments for the 5F-Trp residues (14, 25, 45, and 158) were based on comparison of the wild-type protein spectrum with the spectra of three single Trp-to-Phe replacement mutants. Previously we showed from fluorescence and absorption difference spectra of mutant versus wild-type sTF that the side chains of Trpl4 and Trp25 are buried, whereas those of Trp45 and Trp158 are partially exposed to bulk solvent (Hasselbacher et al., Biophys J 1995;69:20-29). 19F NMR paramagnetic broadening and solvent-induced isotope-shift experiments show that position 5 of the indole ring of 5F-Trp158 is exposed, whereas that of 5F-Trp45 is essentially inaccessible. Although 5F-Trp incorporation had no discernable effect on the procoagulant cofactor activity of either the wild-type or mutant proteins, 19F NMR chemical shifts showed that the single-Trp mutations are accompanied by subtle changes in the local environments of 5F-Trp residues residing in the same structural domain.  相似文献   

17.
The quinoxaline chromophores of the antibiotics produced by Streptomyces triostinicus are derived from tryptophan. Protoplasts of this organism made novel products when they were incubated with DL-5-fluorotryptophan or DL-6-fluorotryptophan. When added to batch cultures of the organism, DL-5-fluorotryptophan, at concentrations as low as 10 microM, inhibited both mycelial growth and triostin production, but gave rise to novel products. These have been characterized, using fast atom bombardment mass spectrometry, as novel triostins in which one or both of the quinoxaline rings contain an atom of fluorine. The chromatographic properties of the triostins arising from the incorporation of DL-5-fluorotryptophan are very similar to those of triostins containing chlorine or bromine at position 6 of the quinoxaline ring; they are clearly different from those having a chlorine atom at position 7. Accordingly, it is suggested that the carbon atom at position 5 of the indole ring of tryptophan ends up at position 6 of the quinoxaline ring system in triostins A and C.  相似文献   

18.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

19.
We are exploring the active site and the mechanism of the pyridoxal phosphate dependent reactions of the bacterial tryptophan synthase alpha 2 beta 2 complex by use of substrate analogues and of reaction intermediate analogues. Fluorine-19 nuclear magnetic resonance studies and absorption spectroscopy are used to study the binding and reactions of the D and L isomers of 5-fluorotryptophan, of tryptophan, and of (3S)- and (3R)-2,3-dihydro-5-fluorotryptophan. Tryptophan synthase specifically and tightly binds the 3S diastereoisomer of both 2,3-dihydro-5-fluoro-D-tryptophan and 2,3-dihydro-5-fluoro-L-tryptophan, whereas it binds 5-fluoro-D-tryptophan more tightly than 5-fluoro-L-tryptophan. Unexpectedly, we find that the D and L isomers of 5-fluorotryptophan, of tryptophan, and of (3S)-2,3-dihydro-5-fluorotryptophan are slowly interconverted by isomerization reactions. Since these isomerization reactions are 10(3)-10(5) times slower than the beta-replacement and beta-elimination reactions catalyzed by tryptophan synthase, they have no biochemical significance in vivo. However, the occurrence of these slow reactions does throw some light on the nature of the active site of tryptophan synthase and its requirements for substrate binding. Our results raise the interesting question of whether tryptophan synthase itself serves a catalytic role in these slow reactions or whether the enzyme simply binds the substrate and pyridoxal phosphate stereospecifically and thus promotes the intrinsic catalytic activity of pyridoxal phosphate.  相似文献   

20.
Time-resolved fluorescence anisotropy measurements of tryptophan residues were carried out for 44 proteins. Internal rotational motion with a sub-nanosecond correlation time (0.9 +/- 0.6 ns at 10 degrees C) was seen in a large number of proteins, though its amplitude varied from protein to protein. It was found that tryptophan residues which were almost fixed within a protein had either a long (greater than 4 ns) or short (less than 2 ns) fluorescence lifetime, whereas a residue undergoing a large internal motion had an intermediate lifetime (1.5-3 ns). It is suggested that the emission kinetics of a tryptophan residue is coupled with its internal motion. In particular, an immobile tryptophan residue emitting at long wavelength was characterized by a long lifetime (greater than 4 ns). It appears that a tryptophan residue fixed in a polar region has little chance of being quenched by neighboring groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号