首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The last decade has seen the emergence of a universal method for precise and efficient genome engineering. This method relies on the use of sequence-specific endonucleases such as homing endonucleases. The structures of several of these proteins are known, allowing for site-directed mutagenesis of residues essential for DNA binding. Here, we show that a semi-rational approach can be used to derive hundreds of novel proteins from I-CreI, a homing endonuclease from the LAGLIDADG family. These novel endonucleases display a wide range of cleavage patterns in yeast and mammalian cells that in most cases are highly specific and distinct from I-CreI. Second, rules for protein/DNA interaction can be inferred from statistical analysis. Third, novel endonucleases can be combined to create heterodimeric protein species, thereby greatly enhancing the number of potential targets. These results describe a straightforward approach for engineering novel endonucleases with tailored specificities, while preserving the activity and specificity of natural homing endonucleases, and thereby deliver new tools for genome engineering.  相似文献   

2.
Homologous gene targeting is the ultimate tool for reverse genetics, but its use is often limited by low efficiency. In a number of recent studies, site- specific DNA double-strand breaks (DSBs) have been used to induce efficient gene targeting. Engineering highly specific, dedicated DNA endonucleases is the key to a wider usage of this technology. In this study, we present two novel, chimeric meganucleases, derived from homing endonucleases. The first one is able to induce recombination in yeast and mammalian cells, whereas the second cleaves a novel (chosen) DNA target site. These results are a first step toward the generation of custom endonucleases for the purpose of targeted genome engineering.  相似文献   

3.
Genome edited animals can now be easily produced using the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system. Traditionally, these animals have been produced by the introduction of endonucleases into pronuclear-stage embryos. Recently, a novel electroporation method, the “Technique for Animal Knockout system by Electroporation (TAKE),” has been established as a simple and highly efficient tool to introduce endonucleases into embryos instead of methods such as microinjection. Use of frozen-warmed pronuclear-stage embryos in this method has further contributed to efficient production of genome edited animals. However, early developmental stage embryos, including pronuclear-stage embryos, especially those of rats, sometimes show low resistance to physical damage by vitrification and introduction of endonucleases during microinjection. In this study, we propose an ethanol-free, slow-freezing method to reduce physical damage to pronuclear-stage embryos followed by the TAKE method. All mouse and rat frozen embryos were survived after electroporation, and 18% and 100% of offspring were edited target gene, respectively. The resulting protocol is an efficient method for producing genome edited animals.  相似文献   

4.
Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.  相似文献   

5.
Homing endonucleases have become valuable tools for genome engineering. Their sequence recognition repertoires can be expanded by modifying their specificities or by creating chimeric proteins through domain swapping between two subdomains of different homing endonucleases. Here, we show that these two approaches can be combined to create engineered meganucleases with new specificities. We demonstrate the modularity of the chimeric DmoCre meganuclease previously described, by successfully assembling mutants with locally altered specificities affecting both I-DmoI and I-CreI subdomains in order to create active meganucleases with altered specificities. Moreover these new engineered DmoCre variants appear highly specific and present a low toxicity level, similar to I-SceI, and can induce efficient homologous recombination events in mammalian cells. The DmoCre based meganucleases can therefore offer new possibilities for various genome engineering applications.  相似文献   

6.
Zinc-finger endonucleases (ZFNs) make targeted double-stranded breaks in genomic DNA and, thus, stimulate recombination and repair processes at specific sites. ZFNs can now be harnessed to stimulate homologous recombination and gene targeting in plants, which represents a major step towards modifying the plant genome more precisely. ZFN-mediated gene targeting is likely to become a powerful tool for genome research and genetic engineering.  相似文献   

7.
The advances in synthetic biology bring exciting new opportunities to reprogram microorganisms with novel functionalities for environmental applications. For real-world applications, a genetic tool that enables genetic engineering in a stably genomic inherited manner is greatly desired. In this work, we design a novel genetic device for rapid and efficient genome engineering based on the i ntron-encoded homing-endonuclease empowered genome editing (iEditing). The iEditing device enables rapid and efficient genome engineering in Shewanella oneidensis MR-1, the representative strain of the electroactive bacteria group. Moreover, combining with the Red or RecET recombination system, the genome-editing efficiency was greatly improved, up to approximately 100%. Significantly, the iEditing device itself is eliminated simultaneously when genome editing occurs, thereby requiring no follow-up to remove the encoding system. Then, we develop a new extracellular electron transfer (EET) engineering strategy by programming the parallel EET systems to enhance versatile EET. The engineered strains exhibit sufficiently enhanced electron output and pollutant reduction ability. Furthermore, this device has demonstrated its great potential to be extended for genome editing in other important microbes. This work provides a useful and efficient tool for the rapid generation of synthetic microorganisms for various environmental applications.  相似文献   

8.
9.
Oligonucleotide-mediated multiplex genome engineering is an important tool for bacterial genome editing. The efficient application of this technique requires the inactivation of the endogenous methyl-directed mismatch repair system that in turn leads to a drastically elevated genomic mutation rate and the consequent accumulation of undesired off-target mutations. Here, we present a novel strategy for mismatch repair evasion using temperature-sensitive DNA repair mutants and temporal inactivation of the mismatch repair protein complex in Escherichia coli. Our method relies on the transient suppression of DNA repair during mismatch carrying oligonucleotide integration. Using temperature-sensitive control of methyl-directed mismatch repair protein activity during multiplex genome engineering, we reduced the number of off-target mutations by 85%, concurrently maintaining highly efficient and unbiased allelic replacement.  相似文献   

10.
Chromosome engineering is playing an increasingly important role in the functional analysis of genomes. A simple and efficient technology for manipulating large chromosomal segments is key to advancing these analyses. Here we describe a simple but innovative method to split chromosomes in Saccharomyces cerevisiae, which we call PCR-mediated chromosome splitting (PCS). The PCS method combines a streamlined procedure (two-step PCR and one transformation per splitting event) with the CreAoxP system for marker rescue. Using this novel method, chromosomes I (230 kb) and XV (1091 kb) of a haploid cell were split collectively into 10 minichromosomes ranging in size from 29-631 kb with high efficiency (routinely 80%) that were occasionally lost during mitotic growth in various combinations. These observations indicate that the PCS method provides an efficient tool to engineer the yeast genome and may offer a possible approach to identify minimal genome constitutions as a function of culture conditions through further splitting, followed by combinatorial loss of minichromosomes.  相似文献   

11.
Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape of possible target sequences. The previous characterization of protein-DNA interaction before the engineering of new homing endonucleases is essential for further enzyme modification. Here we report the crystal structure of I-CvuI in complex with its target DNA and with the target DNA of I-CreI, a homologue enzyme widely used in genome engineering. To characterize the enzyme cleavage mechanism, we have solved the I-CvuI DNA structures in the presence of non-catalytic (Ca2+) and catalytic ions (Mg2+). We have also analyzed the metal dependence of DNA cleavage using Mg2+ ions at different concentrations ranging from non-cleavable to cleavable concentrations obtained from in vitro cleavage experiments. The structure of I-CvuI homing endonuclease expands the current repertoire for engineering custom specificities, both by itself as a new scaffold alone and in hybrid constructs with other related homing endonucleases or other DNA-binding protein templates.  相似文献   

12.
The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.  相似文献   

13.
14.
15.
Linker-adapter polymerase chain reaction (LA-PCR) is among the most efficient techniques for whole genome DNA amplification. The key stage in LA-PCR is the hydrolysis of a DNA sample with restriction endonucleases, and the choice of a restriction endonuclease (or several endonucleases) determines the composition of DNA probes generated in LA-PCR. Computer analysis of the localization of the restriction sites in human genome has allowed us to propose an efficient technique for generating DNA probes by LA-PCR using the restriction endonucleases HaeIII and RsaI. In silico hydrolysis of human genomic DNA with endonucleases HaeIII and RsaI demonstrate that 100- to 1,000-bp DNA fragments are more abundant in the gene-rich regions. Applying in situ hybridization to metaphase chromosomes, we demonstrated that the produced DNA probes predominantly hybridized to the C-negative chromosomal regions, whereas the FISH signal was almost absent in the C-positive regions. The described protocol for generating DNA probes may be successfully used in subsequent cytogenetic analysis of the C-negative chromosomal regions.  相似文献   

16.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE) method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN) comprised the edited targeted gene as a knockout (67% of mice and 88% of rats) or knock-in (both 33%). The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.  相似文献   

17.
Meganucleases are sequence-specific endonucleases with large cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These enzymes open novel perspectives for genome engineering in a wide range of fields, including gene therapy. A new crystal structure of the I-CreI dimer without DNA has allowed the comparison with the DNA-bound protein. The C-terminal loop displays a different conformation, which suggests its implication in DNA binding. A site-directed mutagenesis study in this region demonstrates that whereas the C-terminal helix is negligible for DNA binding, the final C-terminal loop is essential in DNA binding and cleavage. We have identified two regions that comprise the Ser138–Lys139 and Lys142–Thr143 pairs whose double mutation affect DNA binding in vitro and abolish cleavage in vivo. However, the mutation of only one residue in these sites allows DNA binding in vitro and cleavage in vivo. These findings demonstrate that the C-terminal loop of I-CreI endonuclease plays a fundamental role in its catalytic mechanism and suggest this novel site as a region to take into account for engineering new endonucleases with tailored specificity.  相似文献   

18.
19.
Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.  相似文献   

20.
Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号