首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
R Weisman  J Creanor    P Fantes 《The EMBO journal》1996,15(3):447-456
Cyclophilins are peptidyl-prolyl cis-trans isomerases (PPIases) which have been implicated in intracellular protein folding, transport and assembly. Cyclophilins are also known as the intracellular receptors for the immunosuppressive drug cyclosporin A (CsA). The most common type of cyclophilins are the 18 kDa cytosolic proteins containing only the highly conserved core domain for PPIase and CsA binding activities. The wis2+ gene of the fission yeast Schizosaccharomyces pombe was isolated as a multicopy suppressor of wee1-50 cdc25-22 win1-1, a triple mutant strain which exhibits a cell cycle defect phenotype. Sequence analysis of wis2+ reveals that it encodes a 40 kDa cyclophilin-like protein, homologous to the mammalian cyclophilin 40. The 18 kDa cyclophilin domain (CyP-18) of wis2 is followed by a C-terminal region of 188 amino acids. The C-terminal region of wis2 is essential for suppression of the triple mutant defect. Furthermore this region of the protein is able to confer suppression activity on the 18 kDa S.pombe cyclophilin, cyp1, since a hybrid protein consisting of an 18 kDa S.pombe cyclophilin (cyp1) fused to the C-terminus of wis2 shows suppression activity. We also demonstrate that the level of wis2+ mRNA increases 10- to 20-fold upon heat shock of S.pombe cells suggesting a role for wis2+ in the heat-shock response.  相似文献   

3.
Although the main regulators of leukocyte trafficking are chemokines, another family of chemotactic agents is cyclophilins. Intracellular cyclophilins function as peptidyl-prolyl cis-trans isomerases and are targets of the immunosuppressive drug cyclosporine A (CsA). Cyclophilins can also be secreted in response to stress factors, with elevated levels of extracellular cyclophilins detected in several inflammatory diseases. Extracellular cyclophilins are known to have potent chemotactic properties, suggesting that they might contribute to inflammatory responses by recruiting leukocytes into tissues. The objective of the present study was to determine the impact of blocking cyclophilin activity using a cell-impermeable derivative of CsA to specifically target extracellular pools of cyclophilins. In this study, we show that treatment with this compound in a mouse model of allergic lung inflammation demonstrates up to 80% reduction in inflammation, directly inhibits the recruitment of Ag-specific CD4(+) T cells, and works equally well when delivered at 100-fold lower doses directly to the airways. Our findings suggest that cell-impermeable analogs of CsA can effectively reduce inflammatory responses by targeting leukocyte recruitment mediated by extracellular cyclophilins. Specifically blocking the extracellular functions of cyclophilins may provide an approach for inhibiting the recruitment of one of the principal immune regulators of allergic lung inflammation, Ag-specific CD4(+) T cells, into inflamed airways and lungs.  相似文献   

4.
Proteins of the cyclophilin family display two intriguing properties. On the one hand, they are the intracellular receptors for the immunosuppressive drug cyclosporin A (CsA); on the other hand, they function in vitro as enzymes that catalyse slow steps in protein folding. A dissection of the role of CsA in mediating immunosuppression, together with recent studies on the biology of cyclophilins in the absence of this ligand, is providing fundamental insight into the cellular function of this protein family.  相似文献   

5.
Binary complex formation between the immunosuppressive drug cyclosporin A (CsA) and cyclophilin 18 is the prerequisite for the ability of CsA to inhibit the protein phosphatase activity of calcineurin, a central mediator of antigen-receptor signaling. We show here that several CsA derivatives substituted in position 3 can inhibit calcineurin without prior formation of a complex with cyclophilin 18. [Methylsarcosine(3)]CsA was shown to inhibit calcineurin, either in its free form with an IC(50) value of 10 microm, or in its complex form with cyclophilin 18 with an IC(50) of 500 nm. [Dimethylaminoethylthiosarcosine(3)]CsA ([Dat-Sar(3)]CsA) was found to inhibit calcineurin on its own, with an IC(50) value of 1.0 microm, but was not able to inhibit calcineurin after forming the [Dat-Sar(3)]CsA-cyclophilin 18 binary complex. Despite their different inhibitory properties, both CsA and [Dat-Sar(3)]CsA suppressed T cell proliferation and cytokine production mainly through blocking NFAT activation and interleukin-2 gene expression. Furthermore, to demonstrate that [Dat-Sar(3)]CsA can inhibit calcineurin in a cyclophilin-independent manner in vivo, we tested its effect in a Saccharomyces cerevisiae strain (Delta12), in which all the 12 cyclophilins and FKBPs were deleted. [Dat-Sar(3)]CsA, but not CsA, bypassed the requirement for cellular cyclophilins and caused growth inhibition in the salt-stressed Delta12 strain.  相似文献   

6.
A. Hoerauf    Ch. Rascher    R. Bang    A. Pahl    W. Solbach    K. Brune    M. Röllinghoff  & H. Bang 《Molecular microbiology》1997,24(2):421-429
The antiparasitic effects of cyclosporin A were examined in leishmanial infection by analysing the role of CsA-binding proteins (cyclophilins) in the host–parasite interaction. We hypothesized that the leishmanicidal effects of CsA on Leishmania major infected macrophages might be mediated through a cyclophilin of either the parasite or the host cell. Two cyclophilins (20 and 22 kDa) were purified from L. major parasites and N-terminally sequenced. Although enzyme activity of these cyclophilins was inhibited by CsA, pretreatment of L. major parasites with CsA did not result in reduction of a subsequent macrophage infection, arguing against a role of L. major cyclophilins as infectivity potentiators. However, host-cell cyclophilin A (CypA) was found to be critically involved in the intracellular replication of L. major parasites in murine macrophages. An antisense oligonucleotide to murine CypA was constructed and added to cultures of peritoneal macrophages prior to infection with L. major parasites. This treatment strongly reduced the expression of CypA in macrophages and resulted in the inhibition of the intracellular replication of L. major amastigotes. These data indicate that interaction of amastigotes with host-cell cyclophilin is an important part of the intracellular replication machinery of L. major and define, for the first time, a direct involvement of a cyclophilin in the survival strategies of an intracellular parasite.  相似文献   

7.
Cyclophilins are a family of proteins that exhibit peptidyl-prolyl cis-trans isomerase activity and bind the immunosuppressive agent cyclosporin A (CsA). Brugia malayi is a filarial nematode parasite of humans, for which a cyclophilin-like domain was identified at the N-terminal of a protein containing 843 amino acid residues. There are two differences in sequence in the highly conserved CsA binding site: A histidine and a lysine replace a tryptophan and an alanine, respectively. The crystal structure of this domain has been determined by the molecular replacement method and refined to an R-factor of 16.9% at 2.15 A resolution. The overall structure is similar to other cyclophilins; however, major differences occur in two loops. Comparison of the CsA binding site of this domain with members of the cyclophilin family shows significant structural differences, which can account for the reduced sensitivity of the Brugia malayi protein to inhibition by CsA.  相似文献   

8.
Based on recent X-ray structural information, six site-directed mutants of human cyclophilin A (hCyPA) involving residues in the putative active site--H54, R55, F60, Q111, F113, and H126--have been constructed, overexpressed, and purified from Escherichia coli to homogeneity. The proteins W121A (Liu, J., Chen, C.-M., & Walsh, C.T., 1991a, Biochemistry 30, 2306-2310), H54Q, R55A, F60A, Q111A, F113A, and H126Q were assayed for cis-trans peptidyl-prolyl isomerase (PPIase) activity, their ability to bind the immunosuppressive drug cyclosporin A (CsA), and protein phosphatase 2B (calcineurin) inhibition in the presence of CsA. Results indicate that H54Q, Q111A, F113A, and W121A retain 3-15% of the catalytic efficiency (kcat/Km) of wild-type recombinant hCyPA. The remaining three mutants (R55A, F60A, and H126Q) each retain less than 1% of the wild-type catalytic efficiency, indicating participation by these residues in PPIase catalysis. Each of the mutants bound to a CsA affinity matrix. The mutants R55A, F60A, F113A, and H126Q inhibited calcineurin in the presence of CsA, whereas W121A did not. Although CsA is a competitive inhibitor of PPIase activity, it can complex with enzymatically inactive cyclophilins and inhibit the phosphatase activity of calcineurin.  相似文献   

9.
10.
A novel macrolide antibiotic, FK-506, isolated from Streptomyces tsukubaensis, has been shown to be a potent immunosuppressive agent in vivo and in vitro. FK-506 shares a number of immunosuppressive properties with the cyclic peptide, cyclosporin A (CsA), although 10 to 100 times more potent in this regard. These similarities suggest that both agents may share a similar mechanism(s) of action at the biochemical level. We have identified a cytoplasmic binding protein for FK-506 in the human T cell line, JURKAT, using [3H]FK-506. The FK-506 binding protein has a mr of 10 to 12 kDa (as determined by gel filtration), is heat stable and does not bind CsA. This contrasts with the CsA binding protein, cyclophilin, in that cyclophilin is heat labile and has a mr of 15 to 17 kDa. Our data suggest that FK-506 binds to a low m.w. protein(s) in JURKAT cells, which is distinct from cyclophilin. This protein may mediate the immunosuppressive effects of FK-506 in T cells. In addition, our results suggest that the immunosuppressive activity of FK-506, as with CsA, is mediated by an intracellular mechanism.  相似文献   

11.
Renal excretion of citrate, an inhibitor of calcium stone formation, is controlled mainly by reabsorption via the apical Na+-dicarboxylate cotransporter NaDC1 (SLC13A2) in the proximal tubule. Recently, it has been shown that the protein phosphatase calcineurin inhibitors cyclosporin A (CsA) and FK-506 induce hypocitraturia, a risk factor for nephrolithiasis in kidney transplant patients, but apparently through urine acidification. This suggests that these agents up-regulate NaDC1 activity. Using the Xenopus lævis oocyte and HEK293 cell expression systems, we examined first the effect of both anti-calcineurins on NaDC1 activity and expression. While FK-506 had no effect, CsA reduced NaDC1-mediated citrate transport by lowering heterologous carrier expression (as well as endogenous carrier expression in HEK293 cells), indicating that calcineurin is not involved. Given that CsA also binds specifically to cyclophilins, we determined next whether such proteins could account for the observed changes by examining the effect of selected cyclophilin wild types and mutants on NaDC1 activity and cyclophilin-specific siRNA. Interestingly, our data show that the cyclophilin isoform B is likely responsible for down-regulation of carrier expression by CsA and that it does so via its chaperone activity on NaDC1 (by direct interaction) rather than its rotamase activity. We have thus identified for the first time a regulatory partner for NaDC1, and have gained novel mechanistic insight into the effect of CsA on renal citrate transport and kidney stone disease, as well as into the regulation of membrane transporters in general.  相似文献   

12.
Functional analysis of Leishmania major cyclophilin   总被引:1,自引:0,他引:1  
A potent immunosuppressive drug cyclosporin A (CsA) is known to inhibit human cell infection by the pathogenic protozoan parasite Leishmania major both in vitro and in vivo. The proposed mechanism of action involves CsA binding to Leishmania major-expressed cyclophilin and subsequent down-regulation of signaling events necessary for establishing productive infection. Recently, we identified a ubiquitously expressed membrane protein, CD147, as a signaling receptor for extracellular cyclophilins in mammalian cells. Here we demonstrate that, while being enzymatically active, the Leishmania cyclophilin, unlike its human homologue, does not interact with CD147 on the cell surface of target cells. CD147 facilitates neither Leishmania binding nor infection. Primary structure and biochemical analyses revealed that the parasite's cyclophilin is defective in heparan binding, an event required for signaling interaction between CD147 and human cyclophilin. When the heparan-binding motif was reconstituted in Leishmania cyclophilin, it regained the CD147-dependent signaling activity. These results underscore a critical role of cyclophilin-heparan interactions in CD147-mediated signaling events and argue against the role of Leishmania cyclophilin in parasite binding to target cells.  相似文献   

13.
Cyclosporin A (CsA) is a potent anti-malarial compound in vitro and in vivo in mice though better known for its immunosuppressive properties in humans. Crystal structures of wild-type and a double mutant Plasmodium falciparum cyclophilin (PfCyP19 and mPfCyP19) complexed with CsA have been determined using diffraction terms to a resolution of 2.1 A (1 A=0.1 nm). The wild-type has a single PfCyP19/CsA complex per asymmetric unit in space group P1 and refined to an R-work of 0.15 and R-free of 0.19. An altered cyclophilin, with two accidental mutations, Phe120 to Leu in the CsA binding pocket and Leu171 to Trp at the C terminus, presents two complexes per asymmetric unit in the orthorhombic space group P2(1)2(1)2. This refined to an R-work of 0.18 and R-free 0.21. The mutations were identified from the crystallographic analysis and the C-terminal alteration helps to explain the different crystal forms obtained. PfCyP19 shares approximately 61 % sequence identity with human cyclophilin A (hCyPA) and the structures are similar, consisting of an eight-stranded antiparallel beta-barrel core capped by two alpha-helices. The fold creates a hydrophobic active-site, the floor of which is formed by side-chains of residues from four antiparallel beta-strands and the walls from loops and turns. We identified C-H.O hydrogen bonds between the drug and protein that may be an important feature of cyclophilins and suggest a general mode of interaction between hydrophobic molecules. Comparisons with cyclophilin-dipeptide complexes suggests that a specific C-H.O hydrogen bonding interaction may contribute to ligand binding. Residues Ser106, His99 and Asp130, located close to the active site and conserved in most cyclophilins, are arranged in a manner reminiscent of a serine protease catalytic triad. A Ser106Ala mutant was engineered to test the hypothesis that this triad contributes to CyP function. Mutant and wild-type enzymes were found to have similar catalytic properties.  相似文献   

14.
The cyclophilins (Cyps) are family members of proteins that exhibit peptidylprolyl cis-trans isomerase (PPIase, EC 5.2.1.8) activity and bind the immunosuppressive agent cyclosprin A (CsA) in varying degrees. During the process of random sequencing of a cDNA library made from Giardia intestinalis WB strain, the cyclophilin gene (gicyp 1) was isolated. An open reading frame of gicyp 1 gene was 576 nucleotides, which corresponded to a translation product of 176 amino acids (Gicyp 1). The identity with other Cyps was about 58-71%. The 13 residues that constituted the CsA binding site of human cyclophilin were also detected in the amino acid sequence of Gicyp 1, including tryptophan residue essential for the drug binding. The single copy of the gicyp 1 gene was detected in the G. intestinalis chromosome by southern hybridization analysis. Recombinant Gicyp 1 protein clearly accelerated the rate of cis-->trans isomerization of the peptide substrate and the catalysis was completely inhibited by the addition of 0.5 microM CsA.  相似文献   

15.
Cyclophilins are peptidyl prolyl cis-trans isomerases that are highly conserved throughout eukaryotes and that are best known for being the cellular target of the immunosuppressive drug cyclosporin A (CsA). The activity of CsA is caused by the drug forming a complex with cyclophilin A and inhibiting the calmodulin-dependent phosphoprotein phosphatase calcineurin. We have investigated the role of CYP1, a cyclophilin-encoding gene in the phytopathogenic fungus Magnaporthe grisea, which is the causal agent of rice blast disease. CYP1 putatively encodes a mitochondrial and cytosolic form of cyclophilin, and targeted gene replacement has shown that CYP1 acts as a virulence determinant in rice blast. Cyp1 mutants show reduced virulence and are impaired in associated functions, such as penetration peg formation and appressorium turgor generation. CYP1 cyclophilin also is the cellular target for CsA in Magnaporthe, and CsA was found to inhibit appressorium development and hyphal growth in a CYP1-dependent manner. These data implicate cyclophilins as virulence factors in phytopathogenic fungi and also provide evidence that calcineurin signaling is required for infection structure formation by Magnaporthe.  相似文献   

16.
17.
Characterization of the cyclophilin of Trichophyton mentagrophytes   总被引:1,自引:0,他引:1  
A genetic approach to cyclophilins in a dermatophyte, Trichophyton mentagrophytes, was carried out. The nucleotide and deduced amino acid sequences of the cyclophilin of T. mentagrophytes shared about 70% sequence similarity with those of Schizosaccharomyces pombe, Saccharomyces cerevisiae and Candida albicans. However, the first 21 amino acid and the C-terminal amino acid regions of 188 to 226 of the T. mentagrophytes cyclophilin were distinct from those of the other fungal cyclophilins. The recombinant glutathione S-transferase (GST)-T. mentagrophytes cyclophilin fusion protein produced by Escherichia coli was purified. The protease digest of the fusion protein had a molecular weight of about 13 kDa and peptidyl-prolyl cis-trans isomerase (PPI) activity. This digest protein from T. mentagrophytes was confirmed to be cyclophilin by proving PPI activity.  相似文献   

18.
The immunosuppressants cyclosporin A (CsA) and FK506 appear to block T-cell function by inhibiting the calcium-regulated phosphatase calcineurin. While multiple distinct intracellular receptors for these drugs (cyclophilins and FKBPs, collectively immunophilins) have been characterized, the functionally active ones have not been discerned. We found that overexpression of cyclophilin A or B or FKBP12 increased T-cell sensitivity to CsA or FK506, respectively, demonstrating that they are able to mediate the inhibitory effects of their respective immunosuppressants in vivo. In contrast, cyclophilin C, FKBP13, and FKBP25 had no effect. Direct comparison of the Ki of each drug-immunophilin complex for calcineurin in vitro revealed that although calcineurin binding was clearly necessary, it was not sufficient to explain the in vivo activity of the immunophilin. Subcellular localization was shown also to play a role, since gene deletions of cyclophilins B and C which changed their intracellular locations altered their activities significantly. Cyclophilin B has been shown previously to be located within calcium-containing intracellular vesicles; its ability to mediate CsA inhibition implies that certain components of the signal transduction machinery are also spatially restricted within the cell.  相似文献   

19.
Pemberton TJ  Kay JE 《FEBS letters》2003,555(2):335-340
Sanglifehrin A (SFA) is a recently discovered immunosuppressant drug that shares its intracellular target with the major immunosuppressant drug cyclosporin A (CsA). Both bind to and inhibit the cyclophilins, a diverse family of proteins found throughout nature that share a conserved catalytic domain. Although they share this common protein target, the mechanism of action of the cyclophilin-SFA complex has been reported as distinct from that of the well-studied cyclophilin-CsA complex. The X-ray structure of a macrolide analogue of SFA's cyclic region complexed with cyclophilin A has recently been resolved, but this left the placement of the linear region of SFA unresolved. Using five cyclophilins from the fission yeast Schizosaccharomyces pombe, and a mutant of one of these proteins, SpCyp3-F128W, we have shown that the sensitivity of cyclophilins to SFA can be correlated to the same specific tryptophan residue that has previously been identified to correlate to CsA sensitivity, and that the tail of SFA may be responsible for mediating this sensitivity.  相似文献   

20.
Cyclosporine is an immunosuppressive drug that is widely used to prevent organ transplant rejection. Known intracellular ligands for cyclosporine include the cyclophilins, a large family of phylogenetically conserved proteins that potentially regulate protein folding in cells. Immunosuppression by cyclosporine is thought to result from the formation of a drug-cyclophilin complex that binds to and inhibits calcineurin, a serine/threonine phosphatase that is activated by TCR engagement. Amino acids within the cyclophilins that are critical for binding to cyclosporine have been identified. Most of these residues are highly conserved within the 15 mammalian cyclophilins, suggesting that many are potential targets for the drug. We examined the effects of cyclosporine on immune cells and mice lacking Ppia, the gene encoding the prototypical cyclophilin protein cyclophilin A. TCR-induced proliferation and signal transduction by Ppia(-/-) CD4(+) T cells were resistant to cyclosporine, an effect that was attributable to diminished calcineurin inhibition. Immunosuppressive doses of cyclosporine failed to block the responses of Ppia(-/-) mice to allogeneic challenge. Rag2(-/-) mice reconstituted with Ppia(-/-) splenocytes were also cyclosporine resistant, indicating that this property is intrinsic to Ppia(-/-) immune cells. Thus, among multiple potential ligands, CypA is the primary mediator of immunosuppression by cyclosporine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号