首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bin1/M-amphiphysin-II is an amphiphysin-II isoform highly expressed in transverse tubules of adult striated muscle and is implicated in their biogenesis. Bin1 contains a basic unique amino-acid sequence, Exon10, which interacts with certain phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), to localize to membranes. Here we found that Exon10 also binds to the src homology 3 (SH3) domain of Bin1 itself, and hence blocks the binding of the SH3 domain to its canonical PxxP ligands, including dynamin. This blockage was released by addition of PI(4,5)P(2) in vitro or in cells overexpressing phosphatidylinositol 4-phosphate 5-kinase. The Exon10-binding interface of the Bin1 SH3 domain largely overlapped with its PxxP-binding interface. We also show that the PLCdelta pleckstrin homology domain, another PI(4,5)P(2)-binding module, cannot substitute for Exon10 in Bin1 function in transverse tubule formation, and suggest the importance of the dual biochemical properties of Exon10 in myogenesis. Our results exemplify a novel mechanism of SH3 domain regulation, and suggest that the SH3-mediated protein-protein interactions of Bin1 are regulated by Exon10 so that it may only occur when Bin1 localizes to certain submembrane areas.  相似文献   

2.
Understanding the molecular mechanisms involved in virus replication and particle assembly is of primary fundamental and biomedical importance. Intrinsic conformational disorder plays a prominent role in viral proteins and their interaction with other viral and host cell proteins via transiently populated structural elements. Here, we report on the results of an investigation of an intrinsically disordered 188-residue fragment of the hepatitis C virus non-structural protein 5A (NS5A), which contains a classical poly-proline Src homology 3 (SH3) binding motif, using sensitivity- and resolution-optimized multidimensional NMR methods, complemented by small-angle X-ray scattering data. Our study provides detailed atomic-resolution information on transient local and long-range structure, as well as fast time scale dynamics in this NS5A fragment. In addition, we could characterize two distinct interaction modes with the SH3 domain of Bin1 (bridging integrator protein 1), a pro-apoptotic tumor suppressor. Despite being largely disordered, the protein contains three regions that transiently adopt α-helical structures, partly stabilized by long-range tertiary interactions. Two of these transient α-helices form a noncanonical SH3-binding motif, which allows low-affinity SH3 binding. Our results contribute to a better understanding of the role of the NS5A protein during hepatitis C virus infection. The present work also highlights the power of NMR spectroscopy to characterize multiple binding events including short-lived transient interactions between globular and highly disordered proteins.  相似文献   

3.
We studied the interaction of the SH3 domain of Bin1 with a 15‐mer peptide of HCV NS5A and show its potency to competitively displace a 15‐mer human c‐Myc fragment, which is a physiological ligand of Bin1, using NMR spectroscopy. Fluorescence spectroscopy and ITC were employed to determine the affinity of Bin1 SH3 to NS5A(347–361), yielding a submicromolar affinity to NS5A. Our study compares the binding dynamics and affinities of the relevant regions for binding of c‐Myc and NS5A to Bin1 SH3. The result gives further insights into the potential role of NS5A in Bin1‐mediated apoptosis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
7.
Hrs-binding protein (Hbp) is a Src homology 3 (SH3) domain-containing protein that tightly associates with Hrs. Hbp together with Hrs is thought to play a regulatory role in endocytic trafficking of growth factor-receptor complexes through early endosomes. Association of Hbp with a binding partner(s) via the SH3 domain seems to be essential for Hbp to exert its function. In this study, we searched for Hbp-binding proteins by a far Western screening and isolated a mouse cDNA clone encoding a deubiquitinating enzyme mUBPY as an Hbp SH3-binding protein. mUBPY has two Hbp-SH3 domain binding sites. Mutagenic analysis identified a consensus sequence PX(V/I)(D/N)RXXKP as the Hbp-SH3 domain binding motif. It is a novel SH3-binding motif and does not contain the canonical proline-rich consensus binding motif, PXXP. Ubiquitination of growth factor receptors is thought to regulate their intracellular degradation. Thus, UBPY may play a regulatory role in the degradation by interaction with the SH3 domain of Hbp via the novel SH3-binding motif.  相似文献   

8.
Jung J  Byeon IJ  Ahn J  Gronenborn AM 《Proteins》2011,79(5):1609-1622
Nef is an HIV accessory protein that plays an important role in the progression of disease after viral infection. It interferes with numerous signaling pathways, one of which involves serine/threonine kinases. Here, we report the results of an NMR structural investigation on full-length Nef and its interaction with the entire regulatory domain of Hck (residues 72-256; Hck32L). A helical conformation was found at the N-terminus for residues 14-22, preceding the folded core domain. In contrast to the previously studied truncated Nef (Nef Δ1-39), the full-length Nef did not show any interactions of Trp57/Leu58 with the hydrophobic patch formed by helices α1 and α2. Upon Hck32L binding, the N-terminal anchor domain as well as the well-known SH3-binding site of Nef exhibited significant chemical shift changes. Upon Nef binding, resonance changes in the Hck spectrum were confined mostly to the SH3 domain, with additional effects seen for the connector between SH3 and SH2, the N-terminal region of SH2 and the linker region that contains the regulatory polyproline motif. The binding data suggest that in full-length Nef more than the core domain partakes in the interaction. The solution conformation of Hck32L was modeled using RDC data and compared with the crystal structure of the equivalent region in the inactivated, full-length Hck, revealing a notable difference in the relative orientations of the SH3 and SH2 domains. The RDC-based model combined with (15)N backbone dynamics data suggest that Hck32L adopts an open conformation without binding of the polyproline motif in the linker to the SH3 domain.  相似文献   

9.
The Src homology (SH) 3 domain has been shown recently to bind peptide sequences that lack the canonical PXXP motif. The diverse specificity in ligand recognition for a group of 15 SH3 domains has now been investigated using arrays of peptides derived from the proline-rich region of the SH2 domain-containing leukocyte protein of 76 kDa (SLP-76). A screen of the peptide arrays using individual or mixed SH3 domains has allowed the identification of a number of candidate SH3-binding peptides. Although some peptides contain the conventional PXXP motif, most are devoid of such a motif and are instead enriched in basic residues. Fluorescent polarization measurements using soluble peptides and purified SH3 domains demonstrated that several SH3 domains, including those from growth factor receptor-bound protein 2 (Grb2), NCK, and phospholipase C (PLC)-gamma1, bound with moderate affinities (10-100 microm) to a group of non-conventional peptides. Of particular interest, the PLC-gamma1 SH3 domain was found to associate with SLP-76 through at least three distinct sites, two of which bore a novel KKPP motif and the other contained the classic PXXP sequence. Intriguingly mutation of critical residues for the three sites not only affected binding of SLP-76 to the PLC-gamma1 SH3 domain but also to the Grb2 C-terminal SH3 domain, indicating that the binding sites in SLP-76 for the two SH3 domains are overlapped. Our studies suggest that the SH3 domain is an inherently promiscuous interaction module capable of binding to peptides that may or may not contain a PXXP motif. Furthermore the identification of numerous non-conventional SH3-binding peptides in SLP-76 implies that the global ligand pool for SH3 domains in a mammalian proteome may be significantly greater than previously acknowledged.  相似文献   

10.
Phosphatases of the regenerating liver (PRL) play oncogenic roles in cancer development and metastasis. Although previous studies indicate that PRL-1 promotes cell growth and migration by activating both the ERK1/2 and RhoA pathways, the mechanism by which it activates these signaling events remains unclear. We have identified a PRL-1-binding peptide (Peptide 1) that shares high sequence identity with a conserved motif in the Src homology 3 (SH3) domain of p115 Rho GTPase-activating protein (GAP). p115 RhoGAP directly binds PRL-1 in vitro and in cells via its SH3 domain. Structural analyses of the PRL-1·Peptide 1 complex revealed a novel protein-protein interaction whereby a sequence motif within the PxxP ligand-binding site of the p115 RhoGAP SH3 domain occupies a folded groove within PRL-1. This prevents the canonical interaction between the SH3 domain of p115 RhoGAP and MEKK1 and results in activation of ERK1/2. Furthermore, PRL-1 binding activates RhoA signaling by inhibiting the catalytic activity of p115 RhoGAP. The results demonstrate that PRL-1 binding to p115 RhoGAP provides a coordinated mechanism underlying ERK1/2 and RhoA activation.  相似文献   

11.
Mixed lineage kinase 3 (MLK3) is a serine/threonine protein kinase that functions as a mitogen-activated protein kinase kinase kinase to activate the c-Jun NH(2)-terminal kinase pathway. MLK3 has also been implicated as an I kappa B kinase kinase in the activation of NF-kappa B. Amino-terminal to its catalytic domain, MLK3 contains a Src homology 3 (SH3) domain. SH3 domains harbor three highly conserved aromatic amino acids that are important for ligand binding. In this study, we mutated one of these corresponding residues within MLK3 to deliberately disrupt the function of its SH3 domain. This SH3-defective mutant of MLK3 exhibited increased catalytic activity compared with wild type MLK3 suggesting that the SH3 domain negatively regulates MLK3 activity. We report herein that the SH3 domain of MLK3 interacts with full-length MLK3, and we have mapped the site of interaction to a region between the zipper and the Cdc42/Rac interactive binding motif. Interestingly, the SH3-binding region contains not a proline-rich sequence but, rather, a single proline residue. Mutation of this sole proline abrogates SH3 binding and increases MLK3 catalytic activity. Taken together, these data demonstrate that MLK3 is autoinhibited through its SH3 domain. The critical proline residue in the SH3-binding site of MLK3 is conserved in the closely related family members, MLK1 and MLK2, suggesting a common autoinhibitory mechanism among these kinases. Our study has revealed the first example of SH3 domain-mediated autoinhibition of a serine/threonine kinase and provides insight into the regulation of the mixed lineage family of protein kinases.  相似文献   

12.
The small GTPases Rac1 and Cdc42 are key regulators of the cytoskeleton. We have previously identified the endocytic protein Intersectin as a binding partner and regulator of Cdc42 GTPase-activating protein (CdGAP) with activity towards Rac1 and Cdc42. This interaction is mediated through the SH3D domain of Intersectin and the central domain of CdGAP, which does not contain any typical proline-rich domain or known SH3-binding motif. Here, we have characterized the Intersectin-SH3D/CdGAP interaction. We show that Intersectin-SH3D interacts directly with a small region of CdGAP highly enriched in basic residues and comprising a novel conserved xKx(K/R)K motif.  相似文献   

13.
Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue.  相似文献   

14.
15.
The p21-activated kinases (PAKs) are important effector proteins of the small GTPases Cdc42 and Rac and control cytoskeletal rearrangements and cell proliferation. The direct interaction of PAKs with guanine nucleotide exchange factors from the PIX/Cool family, which is responsible for the localization of PAK kinases to focal complexes in the cell, is mediated by a 24-residue peptide segment in PAKs and an N-terminal src homology 3 (SH3) domain in PIX/Cool. The SH3-binding segment of PAK contains the atypical consensus-binding motif PxxxPR, which is required for unusually high affinity binding. In order to understand the structural basis for the high affinity and specificity of the PIX-PAK interaction, we solved crystal structures for the N-terminal SH3 domain of betaPIX and for the complex of the atypical binding segment of PAK2 with the N-terminal SH3 domain of betaPIX at 0.92 A and 1.3A resolution, respectively. The asymmetric unit of the crystal contains two SH3 domains and two peptide ligands. The bound peptide adopts a conformation that allows for intimate contacts with three grooves on the surface of the SH3 domain that lie between the n-Src and RT-loops. Most notably, the arginine residue of the PxxxPR motif forms a salt-bridge and is tightly coordinated by a number of residues in the SH3 domain. This arginine-specific interaction appears to be the key determinant for the high affinity binding of PAK peptides. Furthermore, C-terminal residues of the peptide engage in additional interactions with the surface of the RT-loop, which significantly increases binding specificity. Compared to a recent NMR structure of a similar complex, our crystal structure reveals an alternate binding mode. Finally, we compare our crystal structure with the recently published betaPIX/Cbl-b complex structure, and suggest the existence of a molecular switch.  相似文献   

16.
Grb2-Sos1 interaction, mediated by the canonical binding of N-terminal SH3 (nSH3) and C-terminal SH3 (cSH3) domains of Grb2 to a proline-rich sequence in Sos1, provides a key regulatory switch that relays signaling from activated receptor tyrosine kinases to downstream effector molecules such as Ras. Here, using isothermal titration calorimetry in combination with site-directed mutagenesis, we show that the nSH3 domain binds to a Sos1-derived peptide containing the proline-rich consensus motif PPVPPR with an affinity that is nearly threefold greater than that observed for the binding of cSH3 domain. We further demonstrate that such differential binding of nSH3 domain relative to the cSH3 domain is largely due to the requirement of a specific acidic residue in the RT loop of the β-barrel fold to engage in the formation of a salt bridge with the arginine residue in the consensus motif PPVPPR. While this role is fulfilled by an optimally positioned D15 in the nSH3 domain, the chemically distinct and structurally non-equivalent E171 substitutes in the case of the cSH3 domain. Additionally, our data suggest that salt tightly modulates the binding of both SH3 domains to Sos1 in a thermodynamically distinct manner. Our data further reveal that, while binding of both SH3 domains to Sos1 is under enthalpic control, the nSH3 binding suffers from entropic penalty in contrast to entropic gain accompanying the binding of cSH3, implying that the two domains employ differential thermodynamic mechanisms for Sos1 recognition. Our new findings are rationalized in the context of 3D structural models of SH3 domains in complex with the Sos1 peptide. Taken together, our study provides structural basis of the differential binding of SH3 domains of Grb2 to Sos1 and a detailed thermodynamic profile of this key protein-protein interaction pertinent to cellular signaling and cancer.  相似文献   

17.
To understand the role of the Yes-associated protein (YAP), binding partners of its WW1 domain were isolated by a yeast two-hybrid screen. One of the interacting proteins was identified as p53-binding protein-2 (p53BP-2). YAP and p53BP-2 interacted in vitro and in vivo using their WW1 and SH3 domains, respectively. The YAP WW1 domain bound to the YPPPPY motif of p53BP-2, whereas the p53BP-2 SH3 domain interacted with the VPMRLR sequence of YAP, which is different from other known SH3 domain-binding motifs. By mutagenesis, we showed that this unusual SH3 domain interaction was due to the presence of three consecutive tryptophans located within the betaC strand of the SH3 domain. A point mutation within this triplet, W976R, restored the binding selectivity to the general consensus sequence for SH3 domains, the PXXP motif. A constitutively active form of c-Yes was observed to decrease the binding affinity between YAP and p53BP-2 using chloramphenicol acetyltransferase/enzyme-linked immunosorbent assay, whereas the overexpression of c-Yes did not modify this interaction. Since overexpression of an activated form of c-Yes resulted in tyrosine phosphorylation of p53BP-2, we propose that the p53BP-2 phosphorylation, possibly in the WW1 domain-binding motif, might negatively regulate the YAP.p53BP-2 complex.  相似文献   

18.
The Slit-Robo (sr) GTPase-activating protein (GAPs) are important components in the intracellular pathway mediating Slit-Robo signaling in axon guidance and cell migration. We report the first crystal structure of the srGAP1 SH3 domain at 1.8-A resolution. The unusual side chain conformation of the conserved Phe-13 in the P1 pocket renders the ligand binding pocket shallow and narrow, which contributes toward the low binding affinity. Moreover, the opposing electrostatic charge and the hydrophobic properties of the P3 specificity pocket are consistent with the observed binding characteristics of the srGAP1 SH3 domain to its ligand. Surface plasmon resonance experiments indicate that the srGAP1 SH3 domain interacts with its natural ligand inaCtoN orientation. The srGAP1 SH3 domain can bind to both the CC2 and CC3 motifs in vitro. The N-terminal two acidic residues in the CC3 motif recognition site are necessary for srGAP1 SH3 domain binding. A longer CC3 peptide (CC3-FL) binds with greater affinity than its shorter counterpart, suggesting that the residues surrounding the proline-rich core are important for protein-peptide interactions. Our study reveals previously unknown properties of the srGAP-Robo interaction. Our data provide a structural basis for the srGAP-Robo interaction, consistent with the role of the Robo intracellular domain in interacting with other downstream signaling molecules and mediating versatile and dynamic responses to axon guidance and cell migration cues.  相似文献   

19.
The Src homology 2 (SH2) domains of the p85 subunit of phosphatidylinositol 3'-kinase have been shown to bind to the tyrosine-phosphorylated platelet-derived growth factor receptor (PDGFR). Previously, we have demonstrated that p85 SH2 domains can also bind to the serine/threonine kinase A-Raf via a unique phosphorylation-independent interaction. In this report, we describe a new phosphotyrosine-independent p85 SH2-binding protein, ankyrin 3 (Ank3). In general, ankyrins serve a structural role by binding to both integral membrane proteins at the plasma membrane and spectrin/fodrin proteins of the cytoskeleton. However, smaller isoforms of Ank3 lack the membrane domain and are localized to late endosomes and lysosomes. We found that p85 binds directly to these smaller 120- and 105-kDa Ank3 isoforms. Both the spectrin domain and the regulatory domain of Ank3 are involved in binding to p85. At least two domains of p85 can bind to Ank3, and the interaction involving the p85 C-SH2 domain was found to be phosphotyrosine-independent. Overexpression of the 120- or 105-kDa Ank3 proteins resulted in significantly enhanced PDGFR degradation and a reduced ability to proliferate in response to PDGF. Ank3 overexpression also differentially regulated signaling pathways downstream from the PDGFR. Chloroquine, an inhibitor of lysosomal-mediated degradation pathways, blocked the ability of Ank3 to enhance PDGFR degradation. Immunofluorescence experiments demonstrated that both small Ank3 isoforms colocalized with the lysosomal-associated membrane protein and with p85 and the PDGFR. These results suggest that Ank3 plays an important role in lysosomal-mediated receptor down-regulation, likely through a p85-Ank3 interaction.  相似文献   

20.
Intersectin 1L (ITSN1L) acts as a specific guanine nucleotide exchange factor (GEF) for the small guanine nucleotide binding protein Cdc42 via its C‐terminal DH domain. Interestingly, constructs of ITSN1L that comprise additional domains, for instance the five SH3 domains amino‐terminal of the DH domain, were shown to be inhibited in their exchange factor activity. Here, we investigate the inhibitory mechanism of ITSN1L in detail and identify a novel short amino acid motif which mediates autoinhibition. We found this motif to be located in the linker region between the SH3 domains and the DH domain, and we show that within this motif W1221 acts as key residue in establishing the inhibitory interaction. This assigns ITSN1L to a growing class of GEFs that are regulated by a short amino acid motif inhibiting GEF activity by an intramolecular interaction. Moreover, we quantify the interaction between the ITSN1L SH3 domains and the Cdc42 effector N‐WASP using fluorescence anisotropy binding experiments. As the SH3 domains are not involved in autoinhibition, binding of N‐WASP does not release inhibition of nucleotide exchange activity in kinetic experiments, in contrast to earlier observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号