首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沈国胜  陈一岳 《生理通讯》2005,24(4):112-112
我公司1995年推出了MS302生物信号记录分析系统,在国内拥有众多用户,受到用户的好评。经过近年的努力,MS4000U终于以崭新的面貌问世了!MS4000U的设计站在了一个全新的高度,其基本设计思想是硬件集成度高、图形质量好、分析结果准确、软件功能齐全而且操作简单。为科研提供高性能产品是MS4000U的定位,突出做好信号的定量分析是MS4000U不同其他产品的重要标志!  相似文献   

2.
《生理通讯》2005,24(3):88-88
我公司1995年推出了MS302生物信号记录分析系统,在国内拥有众多用户,受到用户的好评。经过近年的努力,MS4000U终于以崭新的面貌问世了!MS4000U的设计站在了一个全新的高度,其基本设计思想是硬件集成度高、图形质量好、分析结果准确、软件功能齐全而且操作简单。为科研提供高性能产品是MS4000U的定位,突出做好信号的定量分析是MS4000U不同其他产品的重要标志!  相似文献   

3.
《生理通讯》2004,23(6):176-176
我公司1995年推出了MS302生物信号记录分析系统,在国内拥有众多用户。经过近年的努力,MS4000U终于以崭新的面貌问世了!MS4000U的设计站在了一个全新的高度,其基本设计思想是硬件集成度高、图形质量好、分析结果准确、软件功能齐全而且操作简单。为科研提供高性能产品是MS4000U的定位,突出做好信号的定量分析是MS4000U不同其他产品的重要标志!  相似文献   

4.
《生理通讯》2005,24(6):179-179
我公司1995年推山了MS302生物信号记录分析系统,在国内拥有众多用户,受到用户的好评。经过近年的努力,MS4000U终于以崭新的面貌问世了!MS4000U的设计站在了一个全新的高度,其基本设计思想是硬件集成度高、图形质量好、分析结果准确、软件功能齐全而且操作简单。  相似文献   

5.
《生理通讯》2005,24(5):148-148
成都遨生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统——ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SOC(System on Chip是一种高度集成化、固件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展,实现了高速的数据采集、实时高速数字信号处理、数据传输、设备级联和外挂专用放大器接口(如微电级放大器…)等强大的功能,从而使ASB240U采集分析系统在其组成的灵活性、功能的扩展性、数据的精确性、宴时性上达到了一个前所未有的高度。  相似文献   

6.
《生理通讯》2006,25(5):172-172
成都邀生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统——ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SOC(Systemon Chip是一种高度集成化、固件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展,实现了高速的数据采集、实时高速数字信号处理、数据传输、设备级联和外挂专用放大器接口(如微电级放大器…)等强大的功能,从而使ASB240U采集分析系统在其组成的灵活性、功能的扩展性、数据的精确性、实时性上达到了一个前所未有的高度。  相似文献   

7.
《生理通讯》2006,25(6):200-200
成都邀生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统--ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SOC(Syste.monChip是一种高度集成化、固件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展,实现了高速的数据采集、实时高速数字信号处理、数据传输、设备级联和外挂专用放大器接口(如微电级放大器…)等强大的功能,从而使ASB240U采集分析系统在其组成的灵活性、功能的扩展性、数据的精确性、实时性上达到了一个前所未有的高度。  相似文献   

8.
《生理通讯》2006,25(1):36-36
成都遨生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统-ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SOC(SystemonChip是一种高度集成化、固件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展,实现了高速的数据采集、实时高速数字信号处理、数据传输、设备级联和外挂专用放大器接口(如微电级放大器…)等强大的功能,从而使ASB240U采集分析系统在其组成的灵活性、功能的扩展性、数据的精确性、实时性上达到了一个前所未有的高度。  相似文献   

9.
《生理通讯》2007,26(2):56-56
成都遨生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统--ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SOC(SystemonChip是一种高度集成化、固件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展,实现了高速的数据采集、实时高速数字信号处理、数据传输、设备级联和外挂专用放大器接口(如微电级放大器…)等强大的功能,从而使ASB240U采集分析系统在其组成的灵活性、功能的扩展性、数据的精确性、实时性上达到了一个前所未有的高度。  相似文献   

10.
《生理通讯》2007,26(1):32-32
成都遨生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统——ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SOC(SystemonChip是一种高度集成化、固件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展,实现了高速的数据采集、实时高速数字信号处理、数据传输、设备级联和外挂专用放大器接口(如微电级放大器…)等强大的功能,从而使ASB240U采集分析系统在其组成的灵活性、功能的扩展性、数据的精确性、实时性上达到了一个前所未有的高度。  相似文献   

11.
《生理通讯》2006,25(3):96-96
成都遨生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统-ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SOC(Syste—monChip是一种高度集成化、固件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展,实现了高速的数据采集、实时高速数字信号处理、数据传输、设备级联和外挂专用放大器接口(如微电级放大器…)等强大的功能,从而使ASB240U采集分析系统在其组成的灵活性、功能的扩展性、数据的精确性、实时性上达到了一个前所未有的高度。  相似文献   

12.
电喷雾离子化/质谱法(ESI/MS)在各种有机化合物、多肽、蛋白质(含糖蛋白)、核苷酸、糖、脂类及合成高分子物质等分析领域获得了广泛的应用,本文系统介绍了ESI/MS的基本原理,其联用技术,及其在生物大分子研究,包括肽图谱测定,糖分析和核苷酸分析中的应用。  相似文献   

13.
《生理通讯》2007,26(6):168
成都遨生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统--ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SoC(Systemon Chip是一种高度集成化、固件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展,实现了高速的数据采集、实时高速数字信号处理、数据传输、设备级联和外挂专用放大器接口(如微电级放大器…)等强大的功能,从而使ASB240U采集分析系统在其组成的灵活性、功能的扩展性、数据的精确性、实时性上达到了一个前所未有的高度。  相似文献   

14.
【目的】基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)法基于微生物的特征蛋白指纹图谱鉴定菌种,本研究利用基因组学和MALDI-TOFMS技术鉴定放线菌纲细菌的核糖体蛋白质标志物。【方法】从MALDI-TOF MS图谱数据库选取放线菌纲代表菌种,在基因组数据库检索目标菌种,获取目标菌株或其参比菌株的核糖体蛋白质序列,计算获得分子质量理论值,用于注释目标菌株MALDI-TOFMS指纹图谱中的核糖体蛋白质信号。【结果】从8目,24科,53属,114种,142株放线菌的MALDI-TOFMS图谱中总共注释出31种核糖体蛋白质。各菌株的指纹图谱中核糖体蛋白质信号数量差异显著。各种核糖体蛋白质信号的注释次数差异显著。总共15种核糖体蛋白质在超过半数图谱中得到注释,注释次数最高的是核糖体大亚基蛋白质L36。【结论】本研究找到了放线菌纲细菌MALDI-TOF MS图谱中常见的15种核糖体蛋白质信号,可为通过识别核糖体蛋白质的质谱特征峰鉴定放线菌的方法建立提供依据。  相似文献   

15.
基质辅助激光解吸/电离飞行时间质谱(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,MALDI-TOF MS)是一种新兴的高通量技术,已广泛应用于临床微生物、食品微生物和水产微生物的快速鉴定。如何进一步提高MALDI-TOF MS在微生物鉴定中的分辨率是该技术当前面临的一大挑战。为了高效处理大量高维微生物MALDI-TOF MS数据,各种机器学习算法得到了应用。本文综述了机器学习在微生物MALDI-TOFMS鉴定中的应用。首先,本文在介绍机器学习在微生物MALDI-TOF MS分类中的工作流程后,进一步对MALDI-TOF MS的数据特征、MALDI-TOF MS数据库、数据的预处理和模型的性能评估进行了描述。然后讨论了典型的机器学习分类算法和集成学习算法的应用。简单的机器学习算法很难满足微生物MALDI-TOF MS分类的高分辨率的需求,而组合不同机器学习算法和集成学习算法可以获得更好的微生物分类性能。在MALDI-TOF MS数据的预处理方面,小波算法和遗传算法的应用最广,它们结合分类算法可以有效提高MALDI-TOF MS的分类性能。随着微生物MALDI-TOF MS数据量的不断增加,在未来的研究工作中应更重视分类算法的改进、不同算法的选择或组合以及预处理算法的改进。  相似文献   

16.
GC/MS分析血浆中丁丙诺啡   总被引:1,自引:0,他引:1  
目的:建立血浆中丁丙诺啡GC/MS分析方法。方法:血浆中丁丙诺啡,加入内标长春西汀,加pH 7缓冲溶液,用三氯甲烷提取,提取物经BSTFA衍生化后进行GC/MS分析。结果:方法的线性范围为2~100 g·L~(-1),检出限为1g·L~(-1)。结论:该方法灵敏度高,可用于涉毒案件血浆中丁丙诺啡的分析。  相似文献   

17.
为了对芒果核中的化学成分进行系统全面地分析,本研究采用超高效液相色谱-四级杆-飞行时间质谱(UPLC-Q-TOF-MS/MS)对芒果核中的化学成分进行了分析和鉴定。采用电喷雾离子源(ESI),于负离子模式下采集数据;结合对照品质谱数据及相关文献,对样品中成分的二级质谱数据进行分析,共鉴定出135个化合物,主要包括没食子酸鞣质类47个、黄酮类47个、有机酸类30个、香豆素类3个、环烯醚萜苷类8个,其中17个化合物首次在芒果核中鉴定得出。本实验运用UPLC-Q-TOF-MS/MS技术对芒果核的化学成分进行了较为全面系统地解析,可为其后续的药效物质基础研究及临床应用奠定基础。  相似文献   

18.
rRNA前体剪切是发生在核仁中重要生物学事件。U3 snoRNA作为rRNA的一个剪切因子被认为是rRNA前体剪切第一步,即5′ETS剪切所必需的,鉴定U3能够为确定rRNA前体剪切位点和剪切产物转运提供间接证据。,本文利用原位杂交技术研究了豌豆(Pisum sativum L.)核仁中U3 snoRNA的分布和转运。结果表明,U3 snoRNA分布在致密纤维组分(dense fibrillar component,DFC)和颗粒组分(granular component,GC)中,在纤维中心(fibrillar center,FC)没有分布 ,当用放线菌素D(actinomycin,D,AMD)处理豌豆根端分生细胞时,rDNA转录受到抑制,标记信号减弱,随着AMD处理时间的延长,标记信号逐渐变弱并出现在DFC远轴区域和GC区域。本文结果提示,rRNA前体剪切发生在DFC和GC区域,剪切产物从围绕FC的区域向周边转运。  相似文献   

19.
《生理通讯》2006,25(4):124-124
成都遨生电子有限公司以电子科技大学测试技术研究所做为研发中心,将大量科研的最新技术成果成功的应用于新一代的生物信号采集与处理系统--ASB240U。该系统抛弃了目前市面上基于单片机和低速总线的体系结构,采用基于大规模可编程芯片FPGA和片上系统SOC(SystemonChip是一种高度集成化、同件化的系统集成技术,也就是把整个应用电子系统全部集成在一个芯片中)设计技术的全新体系结构,突破了数据传输和处理速度的瓶颈,使得系统整体性能获得了突破性进展。  相似文献   

20.
rRNA前体剪切是发生在核仁中的重要生物学事件.U3 snoRNA作为rRNA的一个剪切因子被认为是rRNA前体剪切第一步,即5′ ETS剪切所必需的.鉴定U3能够为确定rRNA前体剪切位点和剪切产物转运提供间接证据.本文利用原位杂交技术研究了豌豆(Pisum sativum L.)核仁中U3 snoRNA的分布和转运.结果表明, U3 snoRNA分布在致密纤维组分(dense fibrillar component, DFC)和颗粒组分(granular component, GC)中,在纤维中心(fibrillar center, FC)没有分布.当用放线菌素D (actinomycin D, AMD)处理豌豆根端分生细胞时,rDNA转录受到抑制,标记信号减弱.随着AMD处理时间的延长,标记信号逐渐变弱并出现在DFC远轴区域和GC区域.本文结果提示,rRNA前体剪切发生在DFC和GC区域,剪切产物从围绕FC的区域向周边转运.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号