首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C W Lin  S H Chiou 《FEBS letters》1992,311(3):276-280
delta-Crystallin is a major lens protein present in the avian and reptilian lenses. To facilitate the cloning of the delta-crystallin gene, cDNA was constructed from the poly(A)+ RNA of pigeon lenses, amplified by the polymerase chain reaction (PCR). The PCR product was then subcloned into pUC19 vector and transformed into E. coli strain JM109. Plasmids purified from the positive clones were prepared for nucleotide sequencing by the dideoxynucleotide chain-termination method. Sequencing two clones, containing 1.4 kb DNA inserts coding for delta-crystallin allowed the construction of a complete, full-length reading frame of 1,417 bp covering a deduced protein sequence of 466 amino acids, including the universal translation-initiating methionine. The pigeon delta-crystallin shows 88, 83 and 69% sequence identity to duck delta 2, chicken delta 1 crystallins and human argininosuccinate lyase respectively. It is also shown that, in contrast to duck delta 2 crystallin which has a high argininosuccinate lyase activity, pigeon delta-crystallin appears to contain very low activity of this enzyme, despite the fact that they share a highly homologous structure. A structural comparison of delta-crystallins with or without enzymatic activity suggested several amino acid replacements which may account for the loss of argininosuccinate lyase activity in the lenses of certain avian species.  相似文献   

2.
Screening of lens homogenates from the representative species of five major classes of vertebrates was undertaken to search for delta-crystallin with argininosuccinate lyase activity. Purification and biochemical characterization of delta-crystallins from the avian and reptilian species revealed differences in their electrophoretic and kinetic properties in spite of their similar tetrameric structure of about 200 kDa in the native forms. Chicken delta-crystallin, in contrast to those obtained from duck, goose and caiman, is almost devoid of the enzymatic activity. Two-dimensional gel electrophoresis of lens homogenates indicated that in the chicken lens delta-crystallin is composed of a subunit with an isoelectric point of 5.9 and a subunit mass of 50 kDa whereas that of goose lenses possesses heterogeneous subunits with isoelectric points spreading in a range of 5.9 to 6.8. Immunological comparison of inactive and active delta-crystallins from the chicken, duck and caiman lenses established the apparent structural similarity of all delta-crystallins to the authentic enzyme regarding some of common surface epitopes, yet they are not completely identical. Kinetic constants for two of the active delta-crystallins, i.e. those from the duck and goose of the Anatidae family, were also determined and their catalyzed reaction was shown to conform to a random Uni-Bi kinetic mechanism similar to that of the argininosuccinate lyase from the bovine liver.  相似文献   

3.
Crystallins from pigeon eye lenses were isolated and purified by gel-permeation chromatography and characterized by gel electrophoresis, amino-acid composition and sequence analysis. Alpha- and beta-crystallins could be obtained in relatively pure forms by single-step size-exclusion chromatography whereas an extra step of ion-exchange chromatography was needed for the separation of delta-crystallin from the beta-crystallin fraction. In contrast to most characterized vertebrate species, a large amount of glycogen is eluted as a high molecular form in the first peak of the gel filtration column. Pigeon delta-crystallin, similar to duck and reptilian delta-crystallins, exists as a tetrameric structure of about 200 kDa in the native form and is composed of one major subunit of 50 kDa with heterogeneous isoelectric points spreading in a range of 4.7 to 6.8. In contrast to those obtained from duck, goose and caiman, delta-crystallin isolated from the pigeon lens possessed very little argininosuccinate lyase activity. However, pigeon delta-crystallin can still cross-react with the antibody against enzymically active duck delta-crystallin as revealed by the sensitive immunoblotting technique. It was also shown that the delta-crystallin content of the total pigeon soluble proteins decreased with the age of the animal. Structural analysis of purified delta-crystallin fraction was made with respect to its amino-acid composition and protein primary sequence. N-terminal sequence analysis indicated the presence of blocked amino-termini in all crystallin fractions of pigeon lenses. Therefore, a sequence analysis of PCR (polymerase chain reaction) amplified delta-crystallin cDNA was employed to deduce the protein sequence of this crystallin. Structural comparison of delta-crystallin sequences from pigeon, chicken and duck lenses casts some doubts on the recent claim that His-89-->Gln mutation in the chicken delta-crystallin may account for the loss of argininosuccinate lyase activity in this avian species, as compared to high enzymic activity in the duck crystallin (Barbosa et al. (1991) J. Biol. Chem. 266, 5286-5290).  相似文献   

4.
The major soluble protein in the lenses of most birds and reptiles is delta-crystallin. In chickens and ducks the delta-crystallin gene has duplicated, and in the duck both genes contribute to the protein in the lens, while in the chicken lens there is a great preponderance of the delta 1 gene product. Purified delta-crystallin has previously been shown to possess the enzymatic activity of argininosuccinate lyase. In order to determine the enzymatic properties of the two duck delta-crystallins their corresponding cDNA molecules were placed in yeast and bacterial expression plasmids. In Saccharomyces cerevisiae, the activity of each crystallin was assessed by transformation of the expression plasmids into a strain deficient for argininosuccinate lyase activity. The ability of the resulting yeast to grow on arginine deficient medium was used as a measure of enzymatic activity. Yeast expressing the duck delta 2-crystallin protein grew rapidly, while those expressing delta 1-crystallin failed to grow. Enzyme activity measurements confirmed the presence of activity in the delta 2-crystallin-expressing yeast, and no detectable activity could be demonstrated in the delta 1-crystallin-expressing yeast. Northern blotting of RNA from the transformed yeast revealed equal levels of mRNA species from the two constructs. For further analysis, the delta 2-crystallin cDNA was placed in the bacterial expression plasmid, pET-3d. The delta 2-crystallin protein produced in Escherichia coli was purified to homogeneity and analyzed to determine the kinetic properties. A Km of 0.35 mM was determined for argininosuccinate and a Vm of 3.5 mumols/min/mg was determined. These data demonstrate that, following duplication of the primordial argininosuccinate lyase gene, one of the genes maintained its role as an enzyme (delta 2-crystallin) while also serving as a crystallin and the other has evolved to specialize as a structural protein in the lens (delta 1-crystallin), presumably losing most or all of its catalytic capacity.  相似文献   

5.
6.
Conservation of δ-crystallin gene structure between ducks and chickens   总被引:3,自引:0,他引:3  
A cloned chicken delta-crystallin cDNA was used to identify two putative delta-crystallin genes in the duck by Southern blot hybridization. A DNA fragment containing most of one of these genes was isolated from a library made in bacteriophage lambda Charon 28A containing genomic DNA from 14-day-old embryonic ducks. Electron microscopy, partial gene sequencing, primer extension analysis using duck mRNA, and comparison with the well-characterized chicken delta-crystallin genes suggest that our cloned duck delta-crystallin gene, like the chicken delta-crystallin genes, is 8-10 kb long and contains 17 exons. Hybridization and sequencing data show great similarity between the homologous 5' untranslated and coding exons of the duck and chicken delta-crystallin genes. Overall, the homologous introns also appear to have approximately 30% sequence similarity, and have been subject to deletion/insertion events. Our partial characterization of duck delta-crystallin gene sequences suggests that this avian and reptilian crystallin family has been conserved during evolution, as have the other crystallin gene families that are expressed in the eye lens.  相似文献   

7.
J Piatigorsky 《Biochemistry》1981,20(22):6427-6431
delta-Crystallin of the embryonic duck lens was compared with that of the embryonic chicken lens with respect to polypeptide composition, synthesis, and messenger ribonucleic acid (mRNA) sequences. Labeling experiments with [35S]methionine revealed that the duck delta-crystallin is composed of minor amounts of polypeptides with molecular weights near 50000 (50K) and 49000 (49K) and much greater amounts of polypeptides with molecular weights near 48000 (48K) and 47000 (47K), as judged by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. All four sizes of polypeptides were synthesized in similar relative proportions as found in vivo in a rabbit reticulocytes lysate supplemented with delta-crystallin mRNA isolated from the embryonic duck lens. Synthesis of the 48K and 47K delta-crystallin polypeptides was differentially reduced in duck lenses cultured in the presence of ouabain. This is similar to the differential reduction of synthesis of the lower molecular weight delta-crystallin peptides in embryonic chicken lenses demonstrated previously. R loops formed between duck or chicken delta-crystallin mRNA and a cloned chicken delta-crystallin cDNA and heteroduplexes formed between duck or chicken delta-crystallin mRNA and cloned chicken genomic DNAs containing delta-crystallin sequences showed that, except for the putative 5' leader sequence, the duck and chicken delta-crystallin mRNAs have extremely similar nucleotide sequences. These data indicate considerable conservation of delta-crystallin throughout the approximately 100 million years of divergence between ducks and chickens. The findings also suggest a possible relationship between the structure of delta-crystallin mRNA and the differential reduction in synthesis of the lower molecular weight delta-crystallin polypeptides in ouabain-treated lenses of ducks and chickens.  相似文献   

8.
Yuan J  Zhou J  Hu X  Li N 《Biochemical genetics》2007,45(3-4):185-194
We report cDNA sequences for the preproghrelin gene from goose, duck, and emu. This gene is involved in stimulating the release of growth hormone in mammals and may play a similar role in avian species. The complete coding sequence of avian preproghrelin encodes a 116 amino acid (aa) protein, which is organized into three parts: the N-terminal hydrophobic signal peptide, a 26 aa peptide for mature ghrelin, and a long C-terminal polypeptide. Domain/motif structures of preproghrelin protein are highly conserved among avian species. Although the avian and mammalian homologs are not highly similar for the whole 116 aa sequence, the identity of the highly conserved “active core” sequence and the n-octanoyl modification of the serine 3 residue avian ghrelin protein with its mammalian homologs implies conserved function of ghrelin protein during evolution. Information provided in this study will be useful in further studies to determine the role the preproghrelin gene plays in the regulation of growth hormone release and body weight gain in avian species. Jing Yuan and Jianjun Zhou contributed equally to this work  相似文献   

9.
Delta crystallins and their nucleic acids   总被引:15,自引:0,他引:15  
  相似文献   

10.
Delta-crystallin is directly related to argininosuccinate lyase (ASL), and catalyzes the reversible hydrolysis of argininosuccinate to arginine and fumarate. Two delta-crystallin isoforms exist in duck lenses, delta1 and delta2, which are 94% identical in amino acid sequence. Although the sequences of duck delta2-crystallin (ddeltac2) and duck delta1-crystallin (ddeltac1) are 69 and 71% identical to that of human ASL, respectively, only ddeltac2 has maintained ASL activity. Domain exchange experiments and comparisons of various delta-crystallin structures have suggested that the amino acid substitutions in the 20's (residues 22-31) and 70's (residues 74-89) loops of ddeltac1 are responsible for the loss of enzyme activity in this isoform. To test this hypothesis, a double loop mutant (DLM) of ddeltac1 was constructed in which all the residues that differ between the two isoforms in the 20's and 70's loops were mutated to those of ddeltac2. Contrary to expectations, kinetic analysis of the DLM found that it was enzymatically inactive. Furthermore, binding of argininosuccinate by the DLM, as well as the ddeltac1, could not be detected by isothermal titration calorimetry (ITC). To examine the conformation of the 20's and 70's loops in the DLM, and to understand why the DLM is unable to bind the substrate, its structure was determined to 2.5 A resolution. Comparison of this structure with both wild-type ddeltac1 and ddeltac2 structures reveals that the conformations of the 20's and 70's loops in the DLM mutant are very similar to those of ddeltac2. This suggests that the five amino acid substitutions in domain 1 which lie outside of the two loop regions and which are different in the DLM, and ddeltac2, must be important enzymatically. The structure of the DLM in complex with sulfate was also determined to 2.2 A resolution. This structure demonstrates that the conformational changes of the 280's loop and domain 3, previously observed in ddeltac1, also occur in the DLM upon sulfate binding, reinforcing the hypothesis that these events may occur in the active ddeltac2 protein during catalysis.  相似文献   

11.
Duck delta1 and delta2 crystallin are 94% identical in amino acid sequence, and while delta2 crystallin is the duck orthologue of argininosuccinate lyase (ASL) and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate, the delta1 isoform is enzymatically inactive. The crystal structures of wild type duck delta1 and delta2 crystallin have been solved at 2.2 and 2.3 A resolution, respectively, and the refinement of the turkey delta1 crystallin has been completed. These structures have been compared with two mutant duck delta2 crystallin structures. Conformational changes were observed in two regions of the N-terminal domain with intraspecies differences between the active and inactive isoforms localized to residues 23-32 and both intra- and interspecies differences localized to the loop of residues 74-89. As the residues implicated in the catalytic mechanism of delta2/ASL are all conserved in delta1, the amino acid substitutions in these two regions are hypothesized to be critical for substrate binding. A sulfate anion was found in the active site of duck delta1 crystallin. This anion, which appears to mimic the fumarate moiety of the argininosuccinate substrate, induces a rigid body movement in domain 3 and a conformational change in the loop of residues 280-290, which together would sequester the substrate from the solvent. The duck delta1 crystallin structure suggests that Ser 281, a residue strictly conserved in all members of the superfamily, could be the catalytic acid in the delta2 crystallin/ASL enzymatic mechanism.  相似文献   

12.
epsilon-Crystallin, a novel avian and reptilian eye lens protein   总被引:4,自引:0,他引:4  
Gel filtration of Peking duck eye lens proteins reveals a component eluting just behind delta-crystallin and comprising approximately 10% of the total soluble protein. The native Mr of this additional component is estimated to be 120000; it appears to be composed of three identical chains of Mr 38000 and pI 7.5. Circular dichroic spectroscopy showed a relatively high alpha-helical content. No immunological cross-reactivity is found with alpha-, beta-, gamma- or delta-crystallins, and partial amino acid sequence determinations likewise failed to reveal any similarity with other known crystallins. We conclude that this protein represents another and novel family of eye lens proteins, for which we propose the designation epsilon-crystallin. epsilon-Crystallin is translated from a 1450-base mRNA, which has been partially purified. epsilon-Crystallin is found scattered among avian and reptilian taxa, but not in other vertebrates. Its rate of evolutionary change seems to be as slow as that of alpha- and beta-crystallins.  相似文献   

13.
14.
A cDNA clone of the argininosuccinate lyase gene (ASL) was isolated from an adult human liver library by probing with synthetic oligonucleotide probes. This clone and a yeast genomic DNA fragment containing the ASL gene were sequenced using the M13-dideoxynucleotide method. Comparison of the yeast and human clones at the nucleotide and putative amino acid sequence levels indicated identities of 50 and 54%, respectively. The most conserved region of the yeast gene was used to detect human clones in the liver cDNA library to test phylogenetic screening capabilities of conserved genes. ASL was mapped to human chromosome 7pter----q22 using human-mouse somatic cell hybrid DNA and further mapped by in situ hybridization to chromosome 7cen----q11.2 on human metaphase chromosomes. The probe also detected a sequence on chromosome 22. Somatic cell hybrid DNA digested with PvuII revealed a mouse polymorphism between Balb/c and C3H mice in the ASL gene.  相似文献   

15.
Delta-crystallin, the major soluble protein component of the avian and reptilian eye lens, is homologous to the urea cycle enzyme argininosuccinate lyase (ASL). In duck lenses there are two delta crystallins, denoted delta1 and delta2. Duck delta2 is both a major structural protein of the lens and also the duck orthologue of ASL, an example of gene recruitment. Although 94% identical to delta2/ASL in the amino acid sequence, delta1 is enzymatically inactive. A series of hybrid proteins have been constructed to assess the role of each structural domain in the enzymatic mechanism. Five chimeras--221, 122, 121, 211, and 112, where the three numbers correspond to the three structural domains and the value of 1 or 2 represents the protein of origin, delta1 or delta2, respectively--were constructed and thermodynamically and kinetically analyzed. The kinetic analysis indicates that only domain 1 is crucial for restoring ASL activity to delta1 crystallin, and that amino acid substitutions in domain 2 may play a role in substrate binding. These results confirm the hypothesis that only one domain, domain 1, is responsible for the loss of catalytic activity in delta1. The thermodynamic characterization of human ASL (hASL) and duck delta1 and delta2 indicate that delta crystallins are slightly less stable than hASL, with the delta1 being the least stable. The deltaGs of unfolding are 57.25, 63.13, and 70.71 kcal mol(-1) for delta1, delta2, and hASL, respectively. This result was unexpected, and we speculate that delta crystallins have adapted to their structural role by adopting a slightly less stable conformation that might allow for enhanced protein-protein and protein-solvent interactions.  相似文献   

16.
R T?njes  D Doenecke 《Gene》1985,39(2-3):275-279
A duck recombinant DNA phage library was screened for H3 histone genes, and the sequence of a variant H3 gene, which appears not to be part of a histone gene cluster, has been determined. As derived from the nucleotide sequence, this gene codes for a 135-amino acid (aa) protein (as any other H3) and shows 10 aa substitutions compared with most published H3 structures. Six of these aa changes are based on one nucleotide (nt) substitutions in arginine codons. This results in three new histidines and, in addition to the highly conserved cysteine at position 110, three more cysteines are found in this H3 histone subtype.  相似文献   

17.
18.
《The Journal of cell biology》1988,107(6):2729-2736
tau-Crystallin has been a major component of the cellular lenses of species throughout vertebrate evolution, from lamprey to birds. Immunofluorescence analysis of the embryonic turtle lens, using antiserum to lamprey tau-crystallin showed that the protein is expressed throughout embryogenesis and is present at high concentrations in all parts of the lens. Partial peptide sequence for the isolated turtle protein and deduced sequences for several lamprey peptides all revealed a close similarity to the glycolytic enzyme enolase (E.C. 4.2.1.11). A full-sized cDNA for putative duck tau- crystallin was obtained and sequenced, confirming the close relationship with alpha-enolase. Southern blot analysis showed that the duck genome contains a single alpha-enolase gene, while Northern blot analysis showed that the message for tau-crystallin/alpha-enolase is present in embryonic duck lens at 25 times the abundance found in liver. tau-Crystallin possesses enolase activity, but the activity is greatly reduced, probably because of age-related posttranslational modification. It thus appears that a highly conserved, important glycolytic enzyme has been used as a structural component of lens since the start of vertebrate evolution. Apparently the enzyme has not been recruited for its catalytic activity but for some distinct structural property. tau-Crystallin/alpha-enolase is an example of a multifunctional protein playing two very different roles in evolution but encoded by a single gene.  相似文献   

19.
Double-stranded complementary DNA (cDNA) sequences were prepared from day-old chick lens total polysomal RNA and inserted into the unique PstI restriction site of the plasmid pBR322. Colonies containing sequences complementary to abundant lens poly(A)-containing RNA sequences were identified by using lens 32P-labelled cDNA. Some of these clones have been characterized as containing delta-crystallin mRNA coding sequences by genomic DNA blot hybridization and RNA blot hybridizations. Hybridization of labelled DNA from such clones to RNA blots detected four size classes of delta-crystallin RNA sequences, although Southern blots indicated that there are probably only two delta-crystallin genes.  相似文献   

20.
Tsai M  Koo J  Howell PL 《Biochemistry》2005,44(25):9034-9044
Delta-crystallin, the major soluble protein component in the avian eye lens, is homologous to argininosuccinate lyase (ASL). Two delta-crystallin isoforms exist in ducks, delta1- and delta2-crystallin, which are 94% identical in amino acid sequence. While duck delta2-crystallin (ddeltac2) has maintained ASL activity, evolution has rendered duck delta1-crystallin (ddeltac1) enzymatically inactive. Previous attempts to regenerate ASL activity in ddeltac1 by mutating the residues in the 20s (residues 22-31) and 70s (residues 74-89) loops to those found in ddeltac2 resulted in a double loop mutant (DLM) which was enzymatically inactive (Tsai, M. et al. (2004) Biochemistry 43, 11672-82). This result suggested that one or more of the remaining five amino acid substitutions in domain 1 of the DLM contributes to the loss of ASL activity in ddeltac1. In the current study, residues Met-9, Val-14, Ala-41, Ile-43, and Glu-115 were targeted for mutagenesis, either alone or in combination, to the residues found in ddeltac2. ASL activity was recovered in the DLM by changing Met-9 to Trp, and this activity is further potentiated in the DLM-M9W mutant when Glu-115 is changed to Asp. The roles of Trp-9 and Asp-115 were further investigated by site-directed mutagenesis in wild-type ddeltac2. Changing the identity of either Trp-9 or Asp-115 in ddeltac2 resulted in a dramatic drop in enzymatic activity. The loss of activity in Trp-9 mutants indicates a preference for an aromatic residue at this position. Truncation mutants of ddeltac2 in which the first 8, 9, or 14 N-terminal residues were removed displayed either decreased or no ASL activity, suggesting residues 1-14 are crucial for enzymatic activity in ddeltac2. Our kinetic studies combined with available structural data suggest that the N-terminal arm in ASL/delta2-crystallin is involved in stabilizing regions of the protein involved in substrate binding and catalysis, and in completely sequestering the substrate from the solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号