首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Avian malaria is caused by a diverse community of genetically differentiated parasites of the genera Plasmodium and Haemoproteus. Rapid seasonal and annual antigenic allele turnover resulting from selection by host immune systems, as observed in some parasite populations infecting humans, may extend analogously to dynamic species compositions within communities of avian malarial parasites. To address this issue, we examined the stability of avian malarial parasite lineages across multiple time-scales within two insular host communities. Parasite communities in Puerto Rico and St Lucia included 20 and 14 genetically distinct parasite lineages, respectively. Lineage composition of the parasite community in Puerto Rico did not vary seasonally or over a 1 year interval. However, over intervals approaching a decade, the avian communities of both islands experienced an apparent loss or gain of one malarial parasite lineage, indicating the potential for relatively frequent lineage turnover. Patterns of temporal variation of parasite lineages in this study suggest periodic colonization and extinction events driven by a combination of host-specific immune responses, competition between lineages and drift. However, the occasional and ecologically dynamic lineage turnover exhibited by insular avian parasite communities is not as rapid as antigenic allele turnover within populations of human malaria.  相似文献   

2.
We recovered 26 genetically distinct avian malaria parasite lineages, based on cytochrome b sequences, from a broad survey of terrestrial avifauna of the Lesser Antilles. Here we describe their distributions across host species within a regional biogeographic context. Most parasite lineages were recovered from a few closely related host species. Specialization on one host species and distribution across many hosts were both rare. Geographic patterns of parasite lineages indicated limited dispersal and frequent local extinction. The central islands of the archipelago share similar parasite lineages and patterns of infection. However, the peripheral islands harbor well-differentiated parasite communities, indicating long periods of isolation. Nonetheless, 20 of 26 parasite lineages were recovered from at least one of three other geographic regions, the Greater Antilles, North America, and South America, suggesting rapid dispersal relative to rate of differentiation. Six parasite lineages were restricted to the Lesser Antilles, primarily to endemic host species. Host differences between populations of the same parasite lineage suggest that host preference may evolve more rapidly than mitochondrial gene sequences. Taken together, distributions of avian malarial parasites reveal evidence of coevolution, host switching, extinction, and periodic recolonization events resulting in ecologically dynamic as well as evolutionarily stable patterns of infection.  相似文献   

3.
Analyses of mitochondrial cytochrome b diversity among avian blood parasites of the genera Haemoproteus and Plasmodium suggest that there might be as many lineages of parasites as there are species of birds. This is in sharp contrast to the approximately 175 parasite species described by traditional methods based on morphology using light microscopy. Until now it has not been clear to what extent parasite mitochondrial DNA lineage diversity reflects intra- or interspecific variation. We have sequenced part of a fast-evolving nuclear gene, dihydrofolate reductase-thymidylate synthase (DHFR-TS), and demonstrate that most of the parasite mitochondrial DNA lineages are associated with unique gene copies at this locus. Although these parasite lineages sometimes coexist in the same host individual, they apparently do not recombine and could therefore be considered as functionally distinct evolutionary entities, with independent evolutionary potential. Studies examining parasite virulence and host immune systems must consider this remarkable diversity of avian malaria parasites.  相似文献   

4.
We used phylogenetic analyses of cytochrome b sequences of malaria parasites and their avian hosts to assess the coevolutionary relationships between host and parasite lineages. Many lineages of avian malaria parasites have broad host distributions, which tend to obscure cospeciation events. The hosts of a single parasite or of closely related parasites were nonetheless most frequently recovered from members of the same host taxonomic family, more so than expected by chance. However, global assessments of the relationship between parasite and host phylogenetic trees, using Component and ParaFit, failed to detect significant cospeciation. The event-based approach employed by TreeFitter revealed significant cospeciation and duplication with certain cost assignments for these events, but host switching was consistently more prominent in matching the parasite tree to the host tree. The absence of a global cospeciation signal despite conservative host distribution most likely reflects relatively frequent acquisition of new hosts by individual parasite lineages. Understanding these processes will require a more refined species concept for malaria parasites and more extensive sampling of parasite distributions across hosts. If parasites can disperse between allopatric host populations through alternative hosts, cospeciation may not have a strong influence on the architecture of host-parasite relationships. Rather, parasite speciation may happen more often in conjunction with the acquisition of new hosts followed by divergent selection between host lineages in sympatry. Detailed studies of the phylogeographic distributions of hosts and parasites are needed to characterize these events.  相似文献   

5.
Previous studies about geographic patterns of species diversity of avian malaria parasites and others in the Order Haemosporida did not include the avian biodiversity hotspot Madagascar. Since there are few data available on avian malaria parasites on Madagascar, we conducted the first known large-scale molecular-based study to investigate their biodiversity. Samples (1067) from 55 bird species were examined by a PCR method amplifying nearly the whole haemosporidian cytochrome b gene (1063?bp). The parasite lineages found were further characterized phylogenetically and the degree of specialization was determined with a newly introduced host diversity index (Hd). Our results demonstrate that Madagascar indeed represents a biodiversity hotspot for avian malaria parasites as we detected 71 genetically distinct parasite lineages of the genera Plasmodium and Haemoproteus. Furthermore, by using a phylogenetic approach and including the sequence divergence we suspect that the detected haemosporidian lineages represent at least 29 groups i.e. proposed species. The here presented Hd values for each parasite regarding host species, genus and family strongly support previous works demonstrating the elastic host ranges of some avian parsites of the Order Haemosporida. Representatives of the avian parasite genera Plasmodium and Leucocytozoon tend to more often be generalists than those of the genus Haemoproteus. However, as demonstrated in various examples, there is a large overlap and single parasite lineages frequently deviate from this rule.  相似文献   

6.
Knowing the genetic variation that occurs in pathogen populations and how it is distributed across geographical areas is essential to understand parasite epidemiology, local patterns of virulence, and evolution of host‐resistance. In addition, it is important to identify populations of pathogens that are evolutionarily independent and thus ‘free’ to adapt to hosts and environments. Here, we investigated genetic variation in the globally distributed, highly invasive avian malaria parasite Plasmodium relictum, which has several distinctive mitochondrial haplotyps (cyt b lineages, SGS1, GRW11 and GRW4). The phylogeography of P. relictum was accessed using the highly variable nuclear gene merozoite surface protein 1 (MSP1), a gene linked to the invasion biology of the parasite. We show that the lineage GRW4 is evolutionarily independent of GRW11 and SGS1 whereas GRW11 and SGS1 share MSP1 alleles and thus suggesting the presence of two distinct species (GRW4 versus SGS1 and GRW11). Further, there were significant differences in the global distribution of MSP1 alleles with differences between GRW4 alleles in the New and the Old World. For SGS1, a lineage formerly believed to have both tropical and temperate transmission, there were clear differences in MSP1 alleles transmitted in tropical Africa compared to the temperate regions of Europe and Asia. Further, we highlight the occurrence of multiple MSP1 alleles in GRW4 isolates from the Hawaiian Islands, where the parasite has contributed to declines and extinctions of endemic forest birds since it was introduced. This study stresses the importance of multiple independent loci for understanding patterns of transmission and evolutionary independence across avian malaria parasites.  相似文献   

7.
Although avian malarial parasites are globally distributed, the factors that affect the geographical distribution and local prevalence of different parasite lineages across host populations or species are still poorly understood. Based on the intense screening of avian malarial parasites in nine European blue tit populations, we studied whether distribution ranges as well as local adaptation, host specialization and phylogenetic relationships can determine the observed prevalences within populations. We found that prevalence differed consistently between parasite lineages and host populations, indicating that the transmission success of parasites is lineage specific but is partly shaped by locality-specific effects. We also found that the lineage-specific estimate of prevalence was related to the distribution range of parasites: lineages found in more host populations were generally more prevalent within these populations. Additionally, parasites with high prevalence that were also widely distributed among blue tit populations were also found to infect more host species. These findings suggest that parasites reaching high local prevalence can also realize wide distribution at a global scale that can have further consequences for host specialization. Although phylogenetic relationships among parasites did not predict prevalence, we detected a close match between a tree based on the geographic distance of the host populations and the parasite phylogenetic tree, implying that neighbouring host populations shared a related parasite fauna.  相似文献   

8.
The determinants of the geographic distribution of avian hematozoa are poorly understood. Sampling parasites from one avian host species across a wide geographic range is an accepted approach to separate the potential influence of host species distribution from geographic effects not directly related to host species biology. We used polymerase chain reaction to screen samples for hematozoan infection from 490 house finches (Carpodacus mexicanus) collected at 8 sites spanning continental North America. To explore geographic patterns of parasite lineage distributions, we sequenced a portion of the mitochondrial cytochrome b gene of Plasmodium species infecting 77 house finches. We identified 5 distinct Plasmodium haplotypes representing 3 lineages that likely represent 3 species. One lineage was common at all sites where we detected Plasmodium species. The second lineage contained 3 haplotypes that showed phylogeographic structuring on a continent-wide scale, with 1 haplotype common in eastern North America and 2 common in western North America. The third divergent lineage was recovered from 1 individual host. Considered together, the partial phylogeographic structuring of Plasmodium cytochrome b lineages over the range of the house finch suggests that parasite lineage distribution is not solely dependent on host species distribution, and other factors such as arthropod vector competence and distribution may be important.  相似文献   

9.
Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species.  相似文献   

10.
We used PCR to screen for the presence of haemosporidian parasites (Phylum: Apicomplexa; Order: Haemosporida) in avian blood samples, and sequenced the parasite mitochondrial cytochrome b gene from infected hosts, to study patterns in the prevalence of haemosporidians in 1,166 individuals of 50 species in four habitats along an elevation gradient in the Sierra de Bahoruco, Dominican Republic, island of Hispaniola. We found an overall prevalence of 0.44 among species with ≥10 individuals sampled per year, but this varied considerably among species. We found no difference in infection rates between years, between males and females, between second‐year (<1 y old) and older birds, or among members of different foraging guilds. Prevalence differed significantly among migratory, endemic resident, and non‐endemic resident species, with endemics having the highest rates of infection. Prevalence also varied among habitats, decreasing with increasing elevation, but the pattern was confounded by variation in the host species present at each elevation. From 215 sequenced parasites from 17 species of avian hosts, we recovered multiple examples of 12 lineages of Haemoproteus (Parahaemoproteus), two lineages of a Columbiformes‐specific clade of H. (Haemoproteus), and 10 lineages of Plasmodium, with an additional seven lineages sampled only once. A single parasite lineage was responsible for 34.4% of all infections, but five more lineages made up 41.8% of all infections. Several lineages were broadly distributed across multiple host species, but six lineages, all H. (Haemoproteus) or H. (Parahaemoproteus), were recorded from at least five individuals of a single host, suggesting host specialization. The number of host species from which each parasite lineage was recovered varied from one to nine; several host species harbored as many as 5–9 parasite lineages. Longitudinal data suggest that while hosts might harbor the same parasite lineage for more than a year, some hosts appear to clear infections from their circulating blood, while others manifested infections by a different parasite lineage.  相似文献   

11.
The development of molecular genetic screening techniques for avian blood parasites has revealed many novel aspects of their ecology, including greatly elevated diversity and complex host-parasite relationships. Many previous studies of malaria in birds have treated single study populations as spatially homogeneous with respect to the likelihood of transmission of malaria to hosts, and we have very little idea whether any spatial heterogeneity influences different malaria lineages similarly. Here, we report an analysis of variation in the prevalence and cytochrome b lineage distribution of avian malaria infection with respect to environmental and host factors, and their interactions, in a single blue tit (Cyanistes caeruleus) population. Of 11 Plasmodium and Haemoproteus cytochrome b lineages found in 997 breeding individuals, the three most numerous (pSGS1, pTURDUS1 and pBT7) were considered separately, in addition to analyses of all avian malaria lineages pooled. Our analyses revealed marked spatial differences in the prevalence and distribution of these lineages, with local prevalence of malaria within the population ranging from over 60% to less than 10%. In addition, we found several more complex patterns of prevalence with respect to local landscape features, host state, parasite genotype, and their interactions. We discuss the implications of such heterogeneity in parasite infection at a local scale for the study of the ecology and evolution of infectious diseases in natural populations. The increased resolution afforded by the combination of molecular genetic and geographical information systems (GIS) tools has the potential to provide many insights into the epidemiology, evolution and ecology of these parasites in the future.  相似文献   

12.
The avian haemosporidian parasite Haemoproteus majoris has been reported to infect a wide range of passerine birds throughout the Holarctic ecozone. Five cytochrome b (cyt b) lineages have been described as belonging to the morphological species H. majoris, and these form a tight phylogenetic cluster together with 13 undescribed lineages that differ from each other by < 1.2% in sequence divergence. Records in a database (MalAvi) that contains global findings of haemosporidian lineages generated by universal primers suggest that these lineages vary substantially in host distribution. We confirm this pattern in a data set collected at Lake Kvismaren, Sweden, where three of the generalist lineages have local transmission. However, whether these lineages represent intraspecific mitochondrial diversity or clusters of cryptic species has previously not been examined. In this study, we developed novel molecular markers to amplify the partial segments of four nuclear genes to determine the level of genetic diversity and gene phylogenies among the five morphologically described cyt b lineages of H. majoris. All five cyt b lineages were strongly associated with unique nuclear alleles at all four nuclear loci, indicating that each mitochondrial lineage represents a distinct biological species. Within lineages, there was no apparent association between nuclear alleles and host species, indicating that they form genetically unstructured populations across multiple host species.  相似文献   

13.
We tested the hypothesis that avian haemosporidian (malaria) parasites specialize on hosts that can be characterized as predictable resources at a site in Amazonian Ecuador. We incorporated host phylogenetic relationship and relative abundance in assessing parasite specialization, and we examined associations between parasite specialization and three host characteristics – abundance, mass and longevity – using quantile regression, phylogenetic logistic regression and t‐tests. Hosts of specialist malaria parasite lineages were on average more abundant than hosts of generalist parasite lineages, but the relationship between host abundance and parasite specialization was not consistent across analyses. We also found support for a positive association between parasite specialization and host longevity, but this also was not consistent across analyses. Nonetheless, our findings suggest that the predictability of a host resource may play a role in the evolution of specialization. However, we also discuss two alternative explanations to the resource predictability hypothesis for specialization: (i) that interspecific interactions among the parasites themselves might constrain some parasites to a specialist strategy, and (ii) that frequent encounters with multiple host species, mediated by blood‐sucking insects, might promote generalization within this system.  相似文献   

14.
Understanding how pathogens and parasites diversify through time and space is fundamental to predicting emerging infectious diseases. Here, we use biogeographic, coevolutionary and phylogenetic analyses to describe the origin, diversity, and distribution of avian malaria parasites in the most diverse avifauna on Earth. We first performed phylogenetic analyses using the mitochondrial cytochrome b (cyt b) gene to determine relationships among parasite lineages. Then, we estimated divergence times and reconstructed ancestral areas to uncover how landscape evolution has shaped the diversification of Parahaemoproteus and Plasmodium in Amazonia. Finally, we assessed the coevolutionary patterns of diversification in this host–parasite system to determine how coevolution may have influenced the contemporary diversity of avian malaria parasites and their distribution among Amazonian birds. Biogeographic analysis of 324 haemosporidian parasite lineages recovered from 4178 individual birds provided strong evidence that these parasites readily disperse across major Amazonian rivers and this has occurred with increasing frequency over the last five million years. We also recovered many duplication events within areas of endemism in Amazonia. Cophylogenetic analyses of these blood parasites and their avian hosts support a diversification history dominated by host switching. The ability of avian malaria parasites to disperse geographically and shift among avian hosts has played a major role in their radiation and has shaped the current distribution and diversity of these parasites across Amazonia.  相似文献   

15.
Parasites may influence the outcome of interspecific competition between closely related host species through lower parasite virulence in the host with which they share the longer evolutionary history. We tested this idea by comparing the prevalence of avian malaria (Haemosporidia) lineages and their association with survival in pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breeding in a recent contact zone on the Swedish island of Öland. A nested PCR protocol amplifying haemosporidian fragments of mtDNA was used to screen the presence of malaria lineages in 1048 blood samples collected during 6 years. Competitively inferior pied flycatchers had a higher prevalence of blood parasites, including the lineages that were shared between the two flycatcher species. Multistate mark–recapture models revealed a lower survival of infected versus uninfected female pied flycatchers, while no such effects were detected in male pied flycatchers or in collared flycatchers of either sex. Our results show that a comparatively new host, the collared flycatcher, appears to be less susceptible to a local northern European malarial lineage where the collared flycatchers have recently expanded their distribution. Pied flycatchers experience strong reproductive interference from collared flycatchers, and the additional impact of species‐specific blood parasite effects adds to this competitive exclusion. These results support the idea that parasites can strongly influence the outcome of interspecific competition between closely related host species, but that the invading species need not necessarily be more susceptible to local parasites.  相似文献   

16.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

17.
Research in avian blood parasites has seen a remarkable increase since the introduction of polymerase chain reaction-based methods for parasite identification. New data are revealing complex multihost-multiparasite systems which are difficult to understand without good knowledge of the host range and geographical distribution of the parasite lineages. However, such information is currently difficult to obtain from the literature, or from general repositories such as GenBank, mainly because (i) different research groups use different parasite lineage names, (ii) GenBank entries frequently refer only to the first host and locality at which each parasite was sampled, and (iii) different researchers use different gene fragments to identify parasite lineages. We propose a unified database of avian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon identified by a partial region of their cytochrome b sequences. The database uses a standardized nomenclature to remove synonymy, and concentrates all available information about each parasite in a public reference site, thereby facilitating access to all researchers. Initial data include a list of host species and localities, as well as genetic markers that can be used for phylogenetical analyses. The database is free to download and will be regularly updated by the authors. Prior to publication of new lineages, we encourage researchers to assign names to match the existing database. We anticipate that the value of the database as a source for determining host range and geographical distribution of the parasites will grow with its size and substantially enhance the understanding of this remarkably diverse group of parasites.  相似文献   

18.
We describe a polymerase chain reaction (PCR) assay that detects avian malarial infection across divergent host species and parasite lineages representing both Plasmodium spp. and Haemoproteus spp. The assay is based on nucleotide primers designed to amplify a 286-bp fragment of ribosomal RNA (rRNA) coding sequence within the 6-kb mitochondrial DNA malaria genome. The rRNA malarial assay outperformed other published PCR diagnostic methods for detecting avian infections. Our data demonstrate that the assay is sensitive to as few as 10(-5) infected erythrocytes in peripheral blood. Results of avian population surveys conducted with the rRNA assay suggest that prevalences of malarial infection are higher than previously documented, and that studies based on microscopic examination of blood smears may substantially underestimate the extent of parasitism by these apicomplexans. Nonetheless, because these and other published primers miss small numbers of infections detected by other methods, including inspection of smears, no assay now available for avian malaria is universally reliable.  相似文献   

19.
Parasite species with differentiated host-specific populations provide a natural opportunity to explore factors involved in parasite diversification. Columbicola macrourae is a species of ectoparasitic feather louse currently recognized from 15 species of New World pigeons and doves. Mitochondrial sequences reveal five divergent haplotype clusters within C. macrourae , suggesting cryptic species. Each cluster is relatively host specific, with only one or a few hosts. We conducted a reciprocal transfer experiment with two of these lineages to test whether host use has an adaptive component. Our results demonstrate that the fitness of each lineage is considerably higher on its native host than on the novel host suggesting that one or more selective agents favor host specialization by the different lineages. In addition, we were able to morphologically separate individual lice from the two experimental lineages using discriminant function analysis. Furthermore, differences in the size of these louse lineages match differences in the size of their respective hosts, paralleling the strong correlation between parasite and host body size across the genus Columbicola . Together, these results suggest that selection in this cryptic species complex reflects selection across the whole genus, and that this selection, in part, contributes to the maintenance of host specialization.  相似文献   

20.
Recent research has revealed well over 1000 mtDNA lineages of avian haemosporidian parasites, but the extent to which this diversity is caused by host–parasite coevolutionary history or environmental heterogeneity is unclear. We surveyed haemosporidian and host mtDNA in a geographically structured, ecological generalist species, the house wren Troglodytes aedon, across the complex landscape of the Peruvian Andes. We detected deep genetic structure within the house wren across its range, represented by seven clades that were between 3.4–5.7% divergent. From muscle and liver tissue of 140 sampled house wrens we found 23 divergent evolutionary lineages of haemosporidian mtDNA, of which ten were novel and apparently specific to the house wren based on searches of haemosporidian databases. Combined and genus‐specific haemosporidian abundance differed significantly across environments and elevation, with Leucocytozoon parasites strongly associated with montane habitats. We observed spatial stratification of haemosporidians along the west slope of the Andes where five lineages were restricted to non‐overlapping elevational bands. Individual haemosporidian lineages varied widely with respect to host specificity, prevalence, and geographic distribution, with the most host‐generalist lineages also being the most prevalent and widely distributed. Despite the deep divergences within the house wren, we found no evidence for host‐specific co‐diversification with haemosporidians. Instead, host‐specific haemosporidian lineages in the genus Haemoproteus were polyphyletic with respect to the New World parasite fauna and appeared to have diversified by periodic host‐switches involving distantly related avian species within the same region. These host‐specific lineages appeared to have diversified contemporaneously with Andean house wrens. Taken together, these findings suggest a model of diffuse co‐diversification in which host and parasite clades have diversified over the same time period and in the same geographic area, but with parasites having limited or ephemeral host specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号