首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low concentrations of auxin (e.g. 10−10m) do not promote the growth of intact seedling roots of maize (Zea mays L. Bear Hybrid WF 9 × 38). Higher concentrations are inhibitory. When the roots are pretreated with the ethylene biosynthesis inhibitors, cobalt and aminoethoxyvinylglycine, auxin (10−10 to 10−8m) strongly promotes their growth. The promotion of growth by auxin in pretreated roots is preceded by enhanced hydrogen ion secretion from the roots. The data indicate that hormone-enhanced hydrogen ion secretion may play a role in the rapid promotion of root growth by auxin. The ability of auxin to promote the growth of intact roots is discussed in relation to the Cholodny/Went hypothesis of hormonal control of root geotropism.  相似文献   

2.
Webb WL 《Plant physiology》1977,60(2):320-322
The uptake of CO2 by Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings and the allocation of photoassimilated carbon among five vegetative tissues were closely related to seedling phenology. In May, newly flushing needles required 5.2% day−1 of photoassimilated carbon relative to needle tissue carbon. As these needles matured, this carbon requirement declined to 1.95% day−1 in August, to 0.94% day−1 in November, and to 0.76% day−1 in January. Other tissues of Douglas fir seedlings required different amounts of photoassimilated carbon for growth and metabolism. These data provide a strong link between daily CO2 uptake and the regulation of carbon allocation by seasonal phenology.  相似文献   

3.
Braun M  Sievers A 《Protoplasma》1993,174(1-2):50-61
Summary The actin cytoskeleton is involved in the positioning of statoliths in tip growingChara rhizoids. The balance between the acropetally acting gravity force and the basipetally acting net out-come of cytoskeletal force results in the dynamically stable position of the statoliths 10–30 m above the cell tip. A change of the direction and/or the amount of one of these forces in a vertically growing rhizoid results in a dislocation of statoliths. Centrifugation was used as a tool to study the characteristics of the interaction between statoliths and microfilaments (MFs). Acropetal and basipetal accelerations up to 6.5 g were applied with the newly constructed slow-rotating-centrifuge-microscope (NIZEMI). Higher accelerations were applied by means of a conventional centrifuge, namely acropetally 10–200 g and basipetally 10–70 g. During acropetal accelerations (1.4–6 g), statoliths were displaced to a new stable position nearer to the cell vertex (12–6.5 m distance to the apical cell wall, respectively), but they did not sediment on the apical cell wall. The original position of the statoliths was reestablished within 30 s after centrifugation. Sedimentation of statoliths and reduction of the growth rates of the rhizoids were observed during acropetal accelerations higher than 50 g. When not only the amount but also the direction of the acceleration were changed in comparison to the natural condition, i.e., during basipetal accelerations (1.0–6.5 g), statoliths were displaced into the subapical zone (up to 90 m distance to the apical cell wall); after 15–20 min the retransport of statoliths to the apex against the direction of acceleration started. Finally, the natural position in the tip was reestablished against the direction of continuous centrifugation. Retransport was observed during accelerations up to 70 g. Under the 1 g condition that followed the retransported statoliths showed an up to 5-fold increase in sedimentation time onto the lateral cell wall when placed horizontally. During basipetal centrifugations 70 g all statoliths entered the basal vacuolar part of the rhizoid where they were cotransported in the streaming cytoplasm. It is concluded that the MF system is able to adapt to higher mass accelerations and that the MF system of the polarly growing rhizoid is polarly organized.Abbreviations g gravitational acceleration (9.81 m/s2) - MF microfilament - NIZEMI Niedergeschwindigkeits-Zentrifugen-Mikroskop (slow-rotating-centrifuge-microscope)  相似文献   

4.
Changes in germination, seedling growth, respiration, response to applied gibberellic acid, and glucose-U-14C utilization were investigated in partially dormant wheat (Triticum aestivum L., Pa 151 × 107) seeds which were stored under various conditions for periods up to 1 year. Only seeds stored at −20 C and 12.4% moisture maintained partial dormancy, which was overcome by germinating in 10−3m gibberellic acid. Germination and seedling growth of seeds stored at 25 C and 15.1% moisture declined within 12 weeks and the percentage of seeds infected with storage fungi increased. Gibberellic acid produced faster growing seedlings, particularly from those seeds with partial dormancy, but did not overcome growth reduction which was caused by deterioration. Seeds kept under laboratory conditions (B), 25 C and 12.1% moisture (C), and 25 C and 15.1% moisture (D) for 12 weeks utilized 35, 55, and 80% less glucose, respectively, than those stored at −20 C and 12.4% moisture (A). Seeds stored under B and C consistently had higher germination, growth, and respiratory rates than seeds from A and D. The respiratory rate declined as deterioration advanced under D. Respiratory quotients ranged from 1.0 for seeds stored under A to 1.6 for seeds stored under D.  相似文献   

5.
Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.  相似文献   

6.
Moore TC 《Plant physiology》1967,42(5):677-684
The capacities of indole-3-acetic acid (IAA) and gibberellin A3 (GA3) to counteract the inhibitory effects of (2-chloroethyl) trimethylammonium chloride (CCC), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (Amo-1618), and N,N-dimethylaminosuccinamic acid (B-995) on hypocotyl elongation in light-grown cucumber (Cucumis sativus L.) seedlings were investigated. One μg of GA3 applied to the shoot tip was sufficient to completely nullify the effect of 10 μg of Amo-1618 or 25 μg of B-995 applied simultaneously to the shoot tip, and 10 μg of GA3 completely counteracted the effect of 10−3 m CCC added to the root medium. One μg of IAA counteracted the effect of 10−3 m CCC in the root medium, but IAA did not nullify the action of either Amo-1618 or B-995. Experiments were conducted using 2 growth retardants simultaneously, which indicated that Amo-1618 and CCC inhibit a common process, namely GA biosynthesis, essential to hypocotyl elongation. However, since the effect of CCC was overcome by applications of both GA and IAA, growth retardation resulting from treatment with CCC apparently is not due solely to inhibition of GA biosynthesis. B-995 did not interact additively with either Amo-1618 or CCC, which suggests that B-995 affects a process different from those affected by the other 2 retardants. Thus, while inhibition evoked by B-995 is reversible by applied GA, the action of B-995 does not appear to be inhibition of GA biosynthesis.  相似文献   

7.
The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha−1) and two leaching levels (750 and 1200 m3 ha−1). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha−1 and water was supplied at 1200 m3·ha−1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage.  相似文献   

8.
The vertical growth responses of corn seedlings (Zea mays L. Mo17 × B73) were determined over an 8-hour period. When seedlings were decapitated 3 millimeters from the coleoptile's tip and supplied with indole-3-acetic acid (IAA) in 1.5% agar blocks, the response was dependent both on time and IAA concentration. The dose-response curves changed in shape and magnitude depending on the total time of IAA application. High concentrations (>3.2 × 10−6 molar) initially produced high relative growth rates that decreased back to the intact rate (0.03 millimeter per hour per millimeter) after 3 hours. Low concentrations (<1.0 × 10−6 molar), or agar blocks without IAA, resulted in a rapid decrease from the intact rate to a level that stabilized at 0.01 millimeter per hour per millimeter until the growth rate began to recover after 3 to 4 hours. Intermediate concentrations produced responses similar to that of the intact organ, though some features of these responses were unique.

The coleoptile curvature in response to gravity depended upon whether the coleoptiles were intact, decapitated, or decapitated and supplied with IAA. Coleoptiles decapitated and not supplied wth IAA showed little or no curvature for 3 hours after decapitation. By this time an adaptation, evoked by the low IAA level, had developed and the coleoptiles began to curve steadily. When 1.0 or 3.2 × 10−6 molar IAA was supplied, curvature was initiated within the first 30 minutes and reached a maximum rate before decreasing and stopping after 3 to 4 hours. The sequence of events in response to these concentrations was similar to the intact sequence but the curvature rate was reduced to one-third to one-half. A model for the autotropic response involving an auxin concentration-dependent, growth-modulating mechanism capable of two modes of adaptation is described.

  相似文献   

9.
Renanthera imschootiana Rolfe is an endangered tropical epiphytic orchid that is threatened with extinction due to over-collection and the loss of suitable habitats. In vitro propagation is a useful way to mass produce plants for re-establishment in the wild and for commercial propagation. Seeds collected 150 days after pollination (DAP) were the optimum stage for in vitro culture. Seed germination reached 93.1% on quarter-strength MS (i.e., MS containing a quarter of macro- and micronutrients) medium containing 0.5 mg l−1 α-naphthaleneacetic acid (NAA), 20% coconut water (CW), 1.0 g l−1 peptone, 10 g l−1 sucrose and 1.0 g l−1 activated charcoal (AC). Quarter-strength MS medium supplemented with 1.0 mg l−1 BA, 0.5 mg l−1 NAA, 1.0 g l−1 peptone, 10 g l−1 sucrose and 20% CW was suitable for the sub-culture of protocorm-like bodies (PLBs) in which the PLB proliferation ratio was 2.88. Quarter-strength MS medium containing 1.0 mg l−1 NAA, 1.0 g l−1 peptone, 100 g l−1 banana homogenate (BH), and 1.0 g l−1 AC was suitable for plantlet formation and 95.67% of plantlets developed from PLBs within 60 days of culture. Hyponex N016 medium supplemented with 0.5 mg l−1 NAA, 1.0 g l−1 peptone, 20 g l−1 sucrose, 150 g l−1 BH, and 1.0 g l−1 AC was suitable for the in vitro growth of plantlets about 2-cm in height. Plantlets 3-cm in height or taller were transplanted to Chilean sphagnum moss, and 95% of plantlets survived after 60 days in a greenhouse. Three hundred transplanted of seedlings 360-days old were reintroduced into three natural habitats. Highest percentage survival (79.67%) was observed in Yuanjiang Nature Reserve two years after reintroduction, followed by Huolu Mountain forest park (71.33%). This protocol is an efficient means for the large-scale propagation and in vitro and in vivo germplasm conservation of R. imschootiana.  相似文献   

10.
To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1–3 years with densities of 9.9 and 5.1 seedlings m−2 in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m−2 in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha−1 at ages 40–50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations.  相似文献   

11.
On ethylene and stem elongation in green pea seedlings   总被引:1,自引:0,他引:1       下载免费PDF全文
Koch BL  Moore TC 《Plant physiology》1990,93(4):1663-1664
Maximum elongation of excised internodal stem sections of light-grown pea (Pisum sativum L.) seedlings occurred at 10−5 molar indoleacetic acid (IAA), with submaximal responses occurring at 10−4 and 10−3 molar. Accompanying elongation at concentrations of IAA of 10−6 to 10−3 molar was production of ethylene, with the amount increasing up to 10−4 molar IAA and then becoming nearly constant. Elongation of light-grown sections was not inhibited by exogenous ethylene up to 10,000 ppm in the presence of 10−5 molar IAA. Marked (up to 50%) inhibition of elongation of internodal segments in situ was observed after treating whole light-grown seedlings with exogenous ethylene for 20 hours. It is concluded that ethylene is not responsible for the submaximal elongation responses of green pea stem sections at high auxin concentrations, but that IAA per se is accountable.  相似文献   

12.
The effect of application of GA3 on hypocotyl growth, the endogenous GAs, and the metabolism of applied 3H-GA1 were investigated in relation to dwarfism and light-mediated growth inhibition in the normal (tall) strain Violet and the dwarf strain Kidachi of Japanese morning glory (Pharbitis nil). GA3 applied in a wide concentration range (10−9 to 10−3m) to 4-day-old seedlings caused great extension of the hypocotyls in light-grown plants of both the normal and the dwarf strain. However, the dwarf strain did not attain the same length as the normal one at any given GA3 concentration, even when saturation was reached. Dark-grown plants of the dwarf strain responded to GA3, although relatively much less than light-grown ones; dark-grown plants of the normal strain showed no GA3 response at all.  相似文献   

13.
Corn seedlings (Zea mays cv W64A × W182E) were grown hydroponically, in the presence or absence of NO3, with or without light and with NH4Cl as the only N source. In agreement with earlier results nitrate reductase (NR) activity was found only in plants treated with both light and NO3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by transfer of the proteins to nitrocellulose paper and reaction with antibodies prepared against a pure NR showed that crude extracts prepared from light-grown plants had a polypeptide of approximately 116 kilodaltons (the subunit size for NR) when NO3 was present in the growth medium. Crude extracts from plants grown in the dark did not have the 116 kilodalton polypeptide, although smaller polypeptides, which reacted with NR-immunoglobulin G, were sometimes found at the gel front. When seedlings were grown on Kimpack paper or well washed sand, NR activity was again found only when the seedlings were exposed to light and NO3. Under these conditions, however, a protein of about 116 kilodaltons, which reacted with the NR antibody was present in light-grown plants whether NO3 was added to the system or not. The NR antibody cross-reacting protein was also seen in hydroponically grown plants when NH4Cl was the only added form of nitrogen. These results indicate that the induction of an inactive NR-protein precursor in corn is mediated either by extremely low levels of NO3 or by some other unidentified factor, and that higher levels of NO3 are necessary for converting the inactive NR cross-reacting protein to a form of the enzyme capable of reducing NO3 to NO2.  相似文献   

14.
Isolation of Plastids from Sunflower Cotyledons during Germination   总被引:3,自引:3,他引:0  
Plastids from cotyledons of sunflower (Helianthus annus L.) seedlings, germinated in the dark or in the light, were isolated by isopycnic sucrose density gradient centrifugation. At all stages of development the whole plastids contained triose phosphate isomerase, NADPH-glyoxylate reductase, and l-dihydroxyphenylalanine oxidase, which were used as marker enzymes. At the beginning of germination the isopycnic density of whole plastids (proplastids) was about 1.22 g cm−3. During development of proplastids into etioplasts in the dark, their isopycnic density increased to 1.26 g cm−3. During exposure of germinating seedlings to white light for 2 days, the isopycnic density of whole plastids decreased from 1.26 to 1.22 g cm−3. These changes in isopycnic density of plastids on sucrose density gradients are consistent with changes in the plastid ultrastructure caused by the protein-rich prolamellar body or by the lipid-rich thylakoids. Broken plastids (thylakoids), determined by the main peak of chlorophyll, increased in isopycnic density from less than 1.14 to about 1.17 g cm−3 during illumination. During germination no major changes occurred in the isopycnic density of mitochondria. Microbodies had an isopycnic density of 1.24 g cm−3 in very early stages of germination, and their density increased to 1.265 g cm−3, when glyoxysomal enzymes reached maximum development.  相似文献   

15.
Nitrate and NO2 transport by roots of 8-day-old uninduced and induced intact barley (Hordeum vulgare L. var CM 72) seedlings were compared to kinetic patterns, reciprocal inhibition of the transport systems, and the effect of the inhibitor, p-hydroxymercuribenzoate. Net uptake of NO3 and NO2 was measured by following the depletion of the ions from the uptake solutions. The roots of uninduced seedlings possessed a low concentration, saturable, low Km, possibly a constitutive uptake system, and a linear system for both NO3 and NO2. The low Km system followed Michaelis-Menten kinetics and approached saturation between 40 and 100 micromolar, whereas the linear system was detected between 100 and 500 micromolar. In roots of induced seedlings, rates for both NO3 and NO2 uptake followed Michaelis-Menten kinetics and approached saturation at about 200 micromolar. In induced roots, two kinetically identifiable transport systems were resolved for each anion. At the lower substrate concentrations, less than 10 micromolar, the apparent low Kms of NO3 and NO2 uptake were 7 and 9 micromolar, respectively, and were similar to those of the low Km system in uninduced roots. At substrate concentrations between 10 and 200 micromolar, the apparent high Km values of NO3 uptake ranged from 34 to 36 micromolar and of NO2 uptake ranged from 41 to 49 micromolar. A linear system was also found in induced seedlings at concentrations above 500 micromolar. Double reciprocal plots indicated that NO3 and NO2 inhibited the uptake of each other competitively in both uninduced and induced seedlings; however, Ki values showed that NO3 was a more effective inhibitor than NO2. Nitrate and NO2 transport by both the low and high Km systems were greatly inhibited by p-hydroxymercuribenzoate, whereas the linear system was only slightly inhibited.  相似文献   

16.
The content of assimilable organic carbon has been proposed to control the growth of microbes in drinking water. However, recent results have shown that there are regions where it is predominantly phosphorus which determines the extent of microbial growth in drinking waters. Even a very low concentration of phosphorus (below 1 μg of P liter−1) can promote extensive microbial growth. We present here a new sensitive method to determine microbially available phosphorus concentrations in water down to 0.08 μg of P liter−1. The method is a bioassay in which the analysis of phosphorus in a water sample is based on maximum growth of Pseudomonas fluorescens P17 when the energy supply and inorganic nutrients, with the exception of phosphorus, do not limit bacterial growth. Maximum growth (CFU) in the water sample is related to the concentration of phosphorus with the factor 373,200 ± 9,400 CFU/μg of PO4-P. A linear relationship was found between cell growth and phosphorus concentration between 0.05 to 10 μg of PO4-P liter−1. The content of microbially available phosphorus in Finnish drinking waters varied from 0.1 to 10.2 μg of P liter−1 (median, 0.60 μg of P liter−1).  相似文献   

17.
Aspects of nitrogen metabolism in the rice seedling   总被引:1,自引:0,他引:1       下载免费PDF全文
The effects of nitrogen source NO3 or NH4+ on nitrogen metabolism during the first 2 weeks of germination of the rice seedling (Oryza sativa L., var. IR22) grown in nutrient solution containing 40 μg/ml N were studied. Total, soluble protein, and free amino N levels were higher in the NH4+-grown seedling, particularly during the 1st week of germination. Asparagine accounted for most of the difference in free amino acid level, in both the root and the shoot. Nitrate and nitrite reductase activities were present mainly in the shoot and were higher in the NO3-grown seedling, whereas the activity of glutamate dehydrogenase and glutamine synthetase in the root tended to be lower than that of the NH4+-grown seedling during the 1st week of germination. Glycolate oxidase and catalase activities were present mainly in the shoot. Maximum activity of the above five enzymes occurred 7 to 10 days after germination. Differences in the zymograms of nitrate reductase, glutamate dehydrogenase, and catalase were mainly between shoot and root and not from N source. Nitrite reductase bands were observed only in plants grown in plants grown in NO3.  相似文献   

18.
The effect of Ca2+ on NO3 assimilation in young barley (Hordeum vulgare L. var CM 72) seedlings in the presence and absence of NaCl was studied. Calcium increased the activity of the NO3 transporter under saline conditions, but had little effect under nonsaline conditions. Calcium decreased the induction period for the NO3 transporter under both saline and nonsaline conditions but had little effect on its apparent Km for NO3 both in the presence and absence of NaCl. The enhancement of NO3 transport by Ca2+ under saline conditions was dependent on the presence of Ca2+ in the uptake solution along with the salt, since Ca2+ had no effect when supplied before or after salinity stress. Although Mn2+ and Mg2+ enhanced NO3 uptake under saline conditions, neither was as effective as Ca2+. In longer studies, increasing the Ca2+ concentration in saline nutrient solutions resulted in increases in NO3 assimilation and seedling growth.  相似文献   

19.
Ni M  Beevers L 《Plant physiology》1990,94(2):745-751
Three dicarbonyl reagents were used to demonstrate the presence of an essential arginine residue in the NO3 uptake system from corn seedling roots (Zea mays L., Golden Cross Bantam). Incubation of corn seedlings with 2,3-butanedione (0.125-1.0 millimolar) and 1,2-cyclohexanedione (0.5-4.0 millimolar) in the presence of borate or with phenylglyoxal (0.25-2.0 millimolar) at pH 7.0 and 30°C resulted in a time-dependent loss of NO3 uptake following pseudo-first-order kinetics. Second-order rate constants obtained from slopes of linear plots of pseudo-first-order rate constants versus reagent concentrations were 1.67 × 10−2, 0.68 × 10−2, and 1.00 × 10−2 millimolar per minute for 2,3-butanedione, 1,2-cyclohexanedione, and phenylglyoxal, respectively, indicating the faster rate of inactivation with 2,3-butanedione at equimolar concentration. Double log plots of pseudo-first-order rate constants versus reagent concentrations yielded slope values of 1.031 (2,3-butanedione), 1.004 (1,2-cyclohexanedione), and 1.067 (phenylglyoxal), respectively, suggesting the modification of a single arginine residue. The effectiveness of the dicarbonyl reagents appeared to increase with increasing medium pH from 5.5 to 8.0. Unaltered Km and decreased Vmax in the presence of reagents indicate the inactivation of the modified carriers with unaltered properties. The results thus obtained indicate that the NO3 transport system possesses at least one essential arginine residue.  相似文献   

20.
Changes in the concentrations of NH4+ and amides during the growth of suspension cultures of rose (Rosa cv. Paul's Scarlet) cells were examined. When cells were grown in medium possessing only NO3 as a nitrogen source, the concentrations of NH4+ and amides increased to 4.0 × 10−1 and 5.9 micromoles per gram fresh weight, respectively. The amounts of both constituents declined during the later stages of growth. When a trace amount of NH4+ was added to the NO3 base starting medium, the concentration of NH4+ in the cells was increased to 7.0 × 10−1 micromoles per gram fresh weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号