首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AimThis study retrospectively analysed the results of using optically stimulated radiation dosimeters (OSLDs) for in vivo dose measurements during total skin electron therapy (TSET, also known as TSEI, TSEB, TSEBT, TSI or TBE) treatments of patients with mycosis fungoides.BackgroundTSET treatments are generally delivered to standing patients, using treatment plans that are devised using manual dose calculations that require verification via in vivo dosimetry. Despite the increasing use of OSLDs for radiation dosimetry, there is minimal published guidance on the use of OSLDs for TSET verification.Materials and methodsThis study retrospectively reviewed in vivo dose measurements made during treatments of nine consecutive TSET patients, treated between 2013 and 2018. Landauer nanoDot OSLDs were used to measure the skin dose at reference locations on each patient, as well as at locations of clinical interest such as the head, hands, feet, axilla and groin.Results1301 OSLD measurements were aggregated and analysed, producing results that were in broad agreement with previous TLD studies, while providing additional information about the variation of dose across concave surfaces and potentially guiding future refinement of treatment setup. In many cases these in vivo measurements were used to identify deviations from the planned dose in reference locations and to identify anatomical regions where additional shielding or boost treatments were required.ConclusionsOSLDs can be used to obtain measurements of TSET dose that can inform monitor unit adjustments and identify regions of under and over dosage, while potentially informing continuous quality improvement in TSET treatment delivery.  相似文献   

2.
Intensity modulated radiotherapy (IMRT) is one of the most modern radiation therapy treatment techniques. Although IMRT can deliver high and complex conformational doses to the tumor volume, its implementation requires rigorous quality assurance (QA) procedures that include a dosimetric pre-treatment verification of individual patient planning. This verification usually involves measuring a small volume of absolute dose with an ionization chamber and checking bi-dimensional fluency with an array of detectors. The planning technique has tri-dimensional characteristics, but no tridimensional dosimetry has been established in the clinical routine. One strategy to perform three-dimensional dosimetry is to use polymeric gels associated with magnetic resonance imaging to evaluate dose distribution. Here, we have compared the results of conventional QA procedures involving one- and two-dimensional dosimetry to the results of three-dimensional dosimetry conducted with MAGIC-f gel in 10 cases of prostate cancer IMRT planning. More specifically, we used the gamma index (3%/3 mm) to compare the results of three-dimensional dosimetry to the expected dose distributions obtained with the treatment planning system. Except for one IMRT treatment plan, the gel dosimetry results agreed with the conventional quality control and provided an overview of dose distribution in the target volume.  相似文献   

3.
The multileaf collimator (MLC) is the standard device used to shape radiation beams for 3-d conformal and intensity-modulated radiation therapy (IMRT). Due to the inherent properties of MLC, there is a small amount of radiation transmitted through the leaves, called radiation transmission (RT). Accurate measurements of this radiation are required to commission and validate IMRT-capable treatment planning systems because this radiation may impact the dosimetry of IMRT-calculated dose distributions. This work compares several detectors in the measurement of RT for a micro-multileaf collimation system. The results show that there are statistically significant differences in the measured RT values between detectors from 3.5 to 12.5% for the same MLC model and less than 0.2% relative to the isocentre dose for an open reference field. However, although small in magnitude, these differences may impact the dosimetry of IMRT treatment planning by up to 1.78 Gy to the healthy tissue surrounding the target for a treatment of 60 Gy in 30 fractions. By the later, these differences must be included as a source of uncertainty in IMRT dose delivery. Also, it must be established which detector offers the most reliable results in the measurement of the RT by using Monte Carlo simulation methods.  相似文献   

4.
PurposeThe aim of this paper is to characterize two different EPID-based solutions for pre-treatment VMAT quality assurance, the 2D portal dosimetry and the 3D projection technique. Their ability to catch the main critical delivery errors was studied.MethodsMeasurements were performed with a linac accelerator equipped with EPID aSi1000, Portal Dose Image Prediction (PDIP), and PerFRACTION softwares. Their performances were studied simulating perturbations of a reference plan through systematic variations in dose values and micromultileaf collimator position. The performance of PDIP, based on 2D forward method, was evaluated calculating gamma passing rate (%GP) between no-error and error-simulated measurements. The impact of errors with PerFRACTION, based on 3D projection technique, was analyzed by calculating the difference between reference and perturbed DVH (%ΔD). Subsequently pre-treatment verification with PerFRACTION was done for 27 patients of different pathologies.ResultsThe sensitivity of PerFRACTION was slightly higher than sensitivity of PDIP, reaching a maximum of 0.9. Specificity was 1 for PerFRACTION and 0.6 for PDIP. The analysis of patients’ DVHs indicated that the mean %ΔD was (1.2 ± 1.9)% for D2%, (0.6 ± 1.7)% for D95% and (−0.0 ± 1.2)% for Dmean of PTV. Regarding OARs, we observed important discrepancies on DVH but that the higher dose variations were in low dose area (<10 Gy).ConclusionsThis study supports the introduction of the new 3D forward projection method for pretreatment QA raising the claim that the visualization of the delivered dose distribution on patient anatomy has major advantages over traditional portal dosimetry QA systems.  相似文献   

5.
There are various different detectors, which can be used for radiotherapy measurements, and more are about to be adopted. Hybrid pixel detectors (HPD) have been originally developed for the high energy physics. However, over the last few years they also expanded in the medical physics. Novel 2D detector Pantherpix is a HPD designed specifically for the radiotherapy. In this article, its properties are characterised and an assessment of its use in radiotherapy photon beams is provided. Properties such as response stability, response linearity, angular dependence and energy dependence were studied. In order to prove sufficient clinical quality for relative dosimetry, further measurements were undertaken (i.e. dose profiles and collimator scatter factors). Acquired results were compared with ion chamber and gafchromic film results. Namely the applicability of PhPix for cobalt beam therapy, which is still widely used (and will be used in near future) in economically less developed countries, is considered.  相似文献   

6.
PurposeTo provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT.MethodsA 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment ‘fluence’ EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions.ResultsFluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition.Conclusions3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry.  相似文献   

7.
This report, compiled by experts on the treatment of mobile targets with advanced radiotherapy, summarizes the main conclusions and innovations achieved during the 4D treatment planning workshop 2013. This annual workshop focuses on research aiming to advance 4D radiotherapy treatments, including all critical aspects of time resolved delivery, such as in-room imaging, motion detection, motion managing, beam application, and quality assurance techniques. The report aims to revise achievements in the field and to discuss remaining challenges and potential solutions. As main achievements advances in the development of a standardized 4D phantom and in the area of 4D-treatment plan optimization were identified. Furthermore, it was noticed that MR imaging gains importance and high interest for sequential 4DCT/MR data sets was expressed, which represents a general trend of the field towards data covering a longer time period of motion. A new point of attention was work related to dose reconstructions, which may play a major role in verification of 4D treatment deliveries. The experimental validation of results achieved by 4D treatment planning and the systematic evaluation of different deformable image registration methods especially for inter-modality fusions were identified as major remaining challenges. A challenge that was also suggested as focus for future 4D workshops was the adaptation of image guidance approaches from conventional radiotherapy into particle therapy. Besides summarizing the last workshop, the authors also want to point out new evolving demands and give an outlook on the focus of the next workshop.  相似文献   

8.
PurposeAt our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct ‘virtual’ 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.Methods and materialsThe virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.ResultsVirtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3 mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5 ± 1.9%(1SD) and 97.1 ± 2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.ConclusionsVirtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).  相似文献   

9.
PurposeIn this work, the potential of an innovative “edgeless” silicon diode was evaluated as a response to the still unmet need of a reliable tool for plan dosimetry verification of very high dose, non-coplanar, patient-specific radiosurgery treatments. In order to prove the effectiveness of the proposed technology, we focused on radiosurgical treatments for functional disease like tremor or pain.MethodsThe edgeless diodes response has been validated with respect to clinical practice standard detectors by reproducing the reference dosimetry data adopted for the Treatment Planning System. In order to evaluate the potential for radiosurgery patient-specific treatment plan verification, the anthropomorphic phantom Alderson RANDO has been adopted along with three edgeless sensors, one placed in the centre of the Planning Target Volume, one superiorly and one inferiorly.ResultsThe reference dosimetry data obtained from the edgeless detectors are within 2.6% for output factor, off-axis ratio and well within 2% for tissue phantom ratio when compared to PTW 60,018 diode. The edgeless detectors measure a dose discrepancy of approximately 3.6% from the mean value calculated by the TPS. Larger discrepancies are obtained in very steep gradient dose regions when the sensors are placed outside the PTV.ConclusionsThe angular independent edgeless diode is proposed as an innovative dosimeter for patient quality assurance of brain functional disorders and other radiosurgery treatments. The comparison of the diode measurements with TPS calculations confirms that edgeless diodes are suitable candidates for patient-specific dosimetric verification in very high dose ranges delivered by non-isocentric stereotactic radiosurgery modalities.  相似文献   

10.
Nowadays MOSFET dosimeters are widely used for dose verification in radiotherapy procedures. Although their sensitive area satisfies size requirements for small field dosimetry, their use in radiosurgery has rarely been reported. The aim of this study is to propose and optimize a calibration method to perform surface measurements in 6 MV shaped-beam radiosurgery for field sizes down to 18 × 18 mm2. The effect of different parameters such as recovery time between 2 readings, batch uniformity and build-up cap attenuation was studied. Batch uniformity was found to be within 2% and isocenter dose attenuation due to the build-up cap over the MOSFET was near 2% irrespective of field size. Two sets of sensitivity coefficients (SC) were determined for TN-502RD MOSFET dosimeters using experimental and calculated calibration; the latter being developed using an inverse square law model. Validation measurements were performed on a realistic head phantom in irregular fields. MOSFET dose values obtained by applying either measured or calculated SC were compared. For calibration, optimal results were obtained for an inter-measurement time lapse of 5 min. We also found that fitting the SC values with the inverse square law reduced the number of measurements required for calibration. The study demonstrated that combining inverse square law and Sterling–Worthley formula resulted in an underestimation of up to 4% of the dose measured by MOSFETs for complex beam geometries. With the inverse square law, it is possible to reduce the number of measurements required for calibration for multiple field–SSD combinations. Our results suggested that MOSFETs are suitable sensors for dosimetry when used at the surface in shaped-beam radiosurgery down to 18 × 18 mm2.  相似文献   

11.
PurposeThree MOSkins dosimeters were assembled over a rectal probe and used to perform in vivo dosimetry during HDR brachytherapy treatments of vaginal cancer. The purpose of this study was to verify the applicability of the developed tool to evaluate discrepancies between planned and measured doses to the rectal wall.Materials and methodsMOSkin dosimeters from the Centre for Medical Radiation Physics are particularly suitable for brachytherapy procedures for their ability to be easily incorporated into treatment instrumentation. In this study, 26 treatment sessions of HDR vaginal brachytherapy were monitored using three MOSkin mounted on a rectal probe. A total of 78 measurements were collected and compared to doses determined by the treatment planning system.ResultsMean dose discrepancy was determined as 2.2 ± 6.9%, with 44.6% of the measurements within ±5%, 89.2% within ±10% and 10.8% higher than ±10%. When dose discrepancies were grouped according to the time elapsed between imaging and treatment (i.e., group 1: ≤90 min; group 2: >90 min), mean discrepancies resulted in 4.7 ± 3.6% and 7.1 ± 5.0% for groups 1 and 2, respectively. Furthermore, the position of the dosimeter on the rectal catheter was found to affect uncertainty, where highest uncertainties were observed for the dosimeter furthest inside the rectum.ConclusionsThis study has verified MOSkin applicability to in-patient dose monitoring in gynecological brachytherapy procedures, demonstrating the dosimetric rectal probe setup as an accurate and convenient IVD instrument for rectal wall dose verification. Furthermore, the study demonstrates that the delivered dose discrepancy may be affected by the duration of treatment planning.  相似文献   

12.
13.
BackgroundThe calculation and measurement on the surface of the skin presents a significant dosimetric problem because of numerous factors which have an influence on the dose distribution in this region.AimThe overall aim of this study was to check the agreement between doses measured with thermoluminescent detectors (TLD) during tomotherapy photon beam irradiation of the skin area of a solid water cylindrical phantom with doses calculated with Hi-Art treatment planning system (TPS).Material and MethodThe measurements of the dose were made with the use of a solid water cylindrical phantom - Cheese Phantom. Two bolus phantoms were used: 5 mm and 10 mm Six different planning treatments were generated. The doses were measured using TL detectors.ResultsIn the case of a tumor located near the surface of the skin, the mean dose for 0.5 cm bolus was - 1.94 Gy, and for 1 cm bolus - 2.03 Gy. For the tumor located inside the phantom and organ at risk on the same side that TL detectors, for a 0.5 cm bolus, mean dose was 0.658 Gy, and for a 1 cm bolus, 0.62 Gy.ConclusionThe analysis of results showed that the relative percentage difference between measured and planned dose in the field of irradiation was less than 10%, while the largest differences were on the board of the field of radiation and outside of the field of irradiation, where the dose was 0.08 Gy to 1 Gy.  相似文献   

14.
PurposeTo describe the design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatment plans using radiochromic film.MethodsA solid water cylindrical phantom was designed with separable upper and lower halves and rests on plastic bearings allowing for 360° rotation about its central axis. The phantom accommodates a half sheet of radiochromic film, and by rotating the cylinder, the film can be placed in any plane between coronal and sagittal. Calculated dose planes coinciding with rotated film measurements are exported by rotating the CT image and dose distribution within the treatment planning system. The process is illustrated with 2 rotated film measurements of an SRS treatment plan involving 4 separate targets. Additionally, 276 patient specific QA measurements were obtained with the phantom and analyzed with a 2%/2 mm gamma criterion.ResultsThe average 2%/2 mm gamma passing rate for all 276 plans was 99.3%. Seventy-two of the 276 plans were measured with the plane of the film rotated between the coronal and sagittal planes and had an average passing rate of 99.4%.ConclusionsThe rotational phantom allows for accurate film measurements in any plane. With this technique, regions of a dose distribution which might otherwise require multiple sagittal or coronal measurements can be verified with as few as a single measurement. This increases efficiency and, in combination with the high spatial resolution inherent to film dosimetry, makes the rotational technique an attractive option for patient-specific QA.  相似文献   

15.
PurposeTo evaluate a formalism for transit dosimetry using a phantom study and prospectively evaluate the protocol on a patient population undergoing 3D conformal radiotherapy.MethodsAmorphous silicon EPIDs were calibrated for dose and used to acquire images of delivered fields. The measured EPID dose map was back-projected using the planning CT images to calculate dose at pre-specified points within the patient using commercially available software, EPIgray (DOSIsoft, France). This software compared computed back-projected dose with treatment planning system dose. A series of tests were performed on solid water phantoms (linearity, field size effects, off-axis effects). 37 patients were enrolled in the prospective study.ResultsThe EPID dose response was stable and linear with dose. For all tested field sizes the agreement was good between EPID-derived and treatment planning system dose in the central axis, with performance stability up to a measured depth of 18 cm (agreement within −0.5% at 10 cm depth on the central axis and within −1.4% at 2 cm off-axis). 126 transit images were analysed of 37 3D-conformal patients. Patient results demonstrated the potential of EPIgray with 91% of all delivered fields achieved the initial set tolerance level of ΔD of 0 ± 5-cGy or %ΔD of 0 ± 5%.ConclusionsThe in vivo dose verification method was simple to implement, with very few commissioning measurements needed. The system required no extra dose to the patient, and importantly was able to detect patient position errors that impacted on dose delivery in two of cases.  相似文献   

16.
This study investigated the dose absorbed by tissues surrounding artificial cardiac pacemakers during external beam radiotherapy procedures. The usefulness of out-of-field reference data, treatment planning systems, and skin dose measurements to estimate the dose in the vicinity of a pacemaker was also examined. Measurements were performed by installing a pacemaker onto an anthropomorphic phantom, and using radiochromic film and optically stimulated luminescence dosimeters to measure the dose in the vicinity of the device during the delivery of square fields and clinical treatment plans. It was found that the dose delivered in the vicinity of the cardiac device was unevenly distributed both laterally and anteroposteriorly. As the device was moved distally from the square field, the dose dropped exponentially, in line with out-of-field reference data in the literature. Treatment planning systems were found to substantially underestimate the dose for volumetric modulated arc therapy, helical tomotherapy, and 3D conformal treatments. The skin dose was observed to be either greater or lesser than the dose received at the depth of the device, depending on the treatment site, and so care should be if skin dose measurements are to be used to estimate the dose to a pacemaker. Square field reference data may be used as an upper estimate of absorbed dose per monitor unit in the vicinity of a cardiac device for complex treatments involving multiple gantry angles.  相似文献   

17.
PurposeAim of this work is the assessment of build-up and superficial doses of different clinical Head&Neck plans delivered with Helical TomoTherapy (HT) (Accuray, Sunnyvale, CA). Depth dose profiles and superficial dose points were measured in order to evaluate the Treatment Planning System (TPS) capability of an accurate dose modeling in regions of disequilibrium. Geometries and scattering conditions were investigated, similar to the ones generally encountered in clinical treatments.MethodsMeasurements were performed with two dosimeters: Gafchromic® EBT3 films (Ashland Inc., Wayne, NJ) and a synthetic single crystal diamond detector (PTW-Frieburg microDiamond, MD). A modified version of the Alderson RANDO phantom was employed to house the detectors. A comparison with TPS data was carried out in terms of dose difference (DD) and distance-to-agreement (DTA).ResultsDD between calculated data and MD measurements are within 4% even in points with high spatial dose variation. For depth profiles, EBT3 data show a DDmax of 3.3% and DTAmax of 2.2 mm, in low and high gradient regions, respectively, and compare well with MD data. EBT3 superficial points always results in measured doses lower than TPS evaluated ones, with a maximum DTA value of 1.5 mm.ConclusionsDoses measured with the two devices are in good agreement and compare well with calculated data. The deviations found in the present work are within the reference tolerance level, suggesting that the HT TPS is capable of a precise dose estimation both in superficial regions and in correspondence with interfaces between air and PMMA.  相似文献   

18.

Aim

The aim of the study was to verify the dose distribution optimisation method in pulsed brachytherapy.

Background

The pulsed-dose rate brachytherapy is a very important method of breast tumour treatment using a standard brachytheraphy equipment. The appropriate dose distribution round an implant is an important issue in treatment planning. Advanced computer systems of treatment planning are equipped with algorithms optimising dose distribution.

Materials and methods

The wax-paraffin phantom was constructed and seven applicators were placed within it. Two treatment plans (non-optimised, optimised) were prepared. The reference points were located at a distance of 5 mm from the applicators’ axis. Thermoluminescent detectors were placed in the phantom at suitable 35 chosen reference points.

Results

The dosimetry verification was carried out in 35 reference points for the plans before and after optimisation. Percentage difference for the plan without optimisation ranged from −8.5% to 1.4% and after optimisation from −8.3% to 0.01%. In 16 reference points, the calculated percentage difference was negative (from −8.5% to 1.3% for the plan without optimisation and from −8.3% to 0.8% for the optimised plan). In the remaining 19 points percentage difference was from 9.1% to 1.4% for the plan without optimisation and from 7.5% to 0.01% for the optimised plan.No statistically significant differences were found between calculated doses and doses measured at reference points in both dose distribution non-optimised treatment plans and optimised treatment plans.

Conclusions

No statistically significant differences were found in dose values at reference points between doses calculated by the treatment planning system and those measured by TLDs. This proves the consistency between the measurements and the calculations.  相似文献   

19.
Polymer gel dosimeters (PGDs) have been widely studied for use in the pretreatment verification of clinical radiation therapy. However, the readability of PGDs in three-dimensional (3D) dosimetry remain unclear. In this study, the pretreatment verifications of clinical radiation therapy were performed using an N-isopropyl-acrylamide (NIPAM) PGD, and the results were used to evaluate the performance of the NIPAM PGD on 3D dose measurement. A gel phantom was used to measure the dose distribution of a clinical case of intensity-modulated radiation therapy. Magnetic resonance imaging scans were performed for dose readouts. The measured dose volumes were compared with the planned dose volume. The relative volume histograms showed that relative volumes with a negative percent dose difference decreased as time elapsed. Furthermore, the histograms revealed few changes after 24 h postirradiation. For the 3%/3 mm and 2%/2 mm criteria, the pass rates of the 12- and 24-h dose volumes were higher than 95%, respectively. This study thus concludes that the pass rate map can be used to evaluate the dose-temporal readability of PGDs and that the NIPAM PGD can be used for clinical pretreatment verifications.  相似文献   

20.
PurposeTriple channel algorithm and specific procedures make more reliable radiochromic dosimetry for treatment planning verification and quality assurance in radiation therapy. A tool to obtain radiochromic dose distributions and compare them with the ones resulting from a treatment planning system was developed and applied.MethodsThe tool was developed as Microsoft Excel macro; it builds dose calibration curves against net optical density of Gafchromic EBT3 film, produces axial, coronal and sagittal dose maps and allows to evaluate them against dose distributions calculated by the Varian treatment planning system Eclipse using gamma index and gamma angle.ResultsThe net optical density standard errors of estimate of calibration curves at 6 MV Varian DBX600 linac energy were 0.2%, 0.4% and 0.2% for the red, green and blue channels. Tests of these curves by means of three independent eight dose points measurement series, at 15 MV and 6 MV Varian 2100C linac and at 6 MV DBX600 linac energies, showed less than 2% of dose errors for the red channel and less than 3% for the green channel in the range 100–450 cGy. The comparisons between dose distributions from Gafchromic EBT3 triple channel algorithm and the ones from Eclipse analytic anisotropic algorithm (AAA) showed values of gamma index 95th percentile between 0.6 and 1.0.ConclusionThe obtained results encourage the application of this tool in radiation therapy quality assurance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号