首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fucosyllactoses (FL), including 2′-fucosyllactose (2′-FL) and 3-fucosyllactose (3-FL), have garnered considerable interest for their value in newborn formula and pharmaceuticals. In this study, an engineered Escherichia coli was developed for high-titer FL biosynthesis by introducing multi-level metabolic engineering strategies, including (1) individual construction of the 2′/3-FL-producing strains through gene combination optimization of the GDP-L-fucose module; (2) screening of rate-limiting enzymes (α-1,2-fucosyltransferase and α-1,3-fucosyltransferase); (3) analysis of critical intermediates and inactivation of competing pathways to redirect carbon fluxes to FL biosynthesis; (4) enhancement of the catalytic performance of rate-limiting enzymes by the RBS screening, fusion peptides and multi-copy gene cloning. The final strains EC49 and EM47 produced 9.36 g/L for 2′-FL and 6.28 g/L for 3-FL in shake flasks with a modified-M9CA medium. Fed-batch cultivations of the two strains generated 64.62 g/L of 2′-FL and 40.68 g/L of 3-FL in the 3-L bioreactors, with yields of 0.65 mol 2′-FL/mol lactose and 0.67 mol 3-FL/mol lactose, respectively. This research provides a viable platform for other high-value-added compounds production in microbial cell factories.  相似文献   

2.
2′-Fucosyllactose (2′-FL), one of the most abundant human milk oligosaccharides (HMOs), is used as a promising infant formula ingredient owing to its multiple health benefits for newborns. However, limited availability and high-cost preparation have restricted its extensive use and intensive research on its potential functions. In this work, a powerful Escherichia coli cell factory was developed to ulteriorly increase 2′-FL production. Initially, a modular pathway engineering was strengthened to balance the synthesis pathway through different plasmid combinations with a resulting maximum 2′-FL titre of 1.45 g l−1. To further facilitate the metabolic flux from GDP-l -fucose towards 2′-FL, the CRISPR-Cas9 system was utilized to inactivate the genes including lacZ and wcaJ, increasing the titre by 6.59-fold. Notably, the co-introduction of NADPH and GTP regeneration pathways was confirmed to be more conducive to 2′-FL formation, achieving a 2′-FL titre of 2.24 g l−1. Moreover, comparisons of various exogenous α1,2-fucosyltransferase candidates revealed that futC from Helicobacter pylori generated the highest titre of 2′-FL. Finally, the viability of scaled-up production of 2′-FL was evidenced in a 3 l bioreactor with a maximum titre of 22.3 g l−1 2′-FL and a yield of 0.53 mole 2′-FL mole−1 lactose.  相似文献   

3.
Glycoconjugate Journal - Fucosylated oligosaccharides are interesting molecules due to their bioactive properties. In particular, their application as active ingredient in milk powders is...  相似文献   

4.
2′-Fucosyllactose (2-FL), one of the most abundant oligosaccharides in human milk, has been spotlighted for its neutraceutical and pharmaceutical potentials. Microbial production of 2-FL is promising since it is efficient as compared to other production methods. In 2-FL microbial production via the salvage pathway for biosynthesis of guanosine 5′-diphosphate (GDP)-l -fucose from fucose, the conversion yield from fucose is important because of the high price of fucose. In this study, deletion of the genes (araA and rhaA) coding for arabinose isomerase (AraA) and rhamnose isomerase (RhaA) was attempted in engineered Escherichia coli for improving 2-FL production by using fucose, lactose, and glycerol. The engineered E. coli constructed previously is able to express fucokinase/GDP-l -fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the α-1,2-fucosyltransferase (FucT2) from Helicobacter pylori and deficient in β-galactosidase (LacZ), fucose isomerase (FucI), and fuculose kinase (FucK). The additional double-deletion of the araA and rhaA genes in the engineered E. coli enhanced the product yield of 2-FL to 0.52 mole 2-FL/mole fucose, and hence the concentration of 2-FL reached to 47.0 g/L, which are 44% and two-fold higher than those (23.1 g/L and 0.36 mole 2-FL/mole fucose) of the control strain in fed-batch fermentation. Elimination of sugar isomerases exhibiting promiscuous activities with fucose might be critical in the microbial production of 2-FL through the salvage pathway of GDP-l -fucose.  相似文献   

5.
Human milk oligosaccharides (HMOs) are beneficial for infants’ health and growth. As one of the most abundant oligosaccharides in human milk, 2′-fucosyllactose (2′-FL) has been approved to supplement in infant formula. Microbial synthesis of 2′-FL achieved in E. coli tends to use a T7-expression system for the heterologous expression of the fucosyltransferase and/or enzymes involved in fucose metabolism. In this paper, we report a novel bioconversion route of 2′-FL by engineering a low pH triggered colanic acid (CA) synthetic pathway, found in E. coli S17−3, which supplies GDP-l-fucose for in vivo 2′-FL formation catalyzed by the heterologous α-1,2-fucosyltransferases. In medium added with 10 g/L lactose and 20 g/L glycerol, recombinant S17−3 was able to produce 0.617 g/L of 2′-FL. The concentration of 2′-FL came to 1.029 g/L when a heterologous pathway for the synthesis of polyhydroxybutyrate was additionally introduced in the engineered S17−3.  相似文献   

6.
A soluble sulfotransferase from porcine serum which catalyzes the transfer of sulfate from adenosine 3'-phosphate 5'-phosphosulphate (PAPS) to 2'-fucosyllactose (2'-FL) was purified 36,333-fold using a combination of conventional and affinity chromatographic steps. The purified enzyme preparation after non-denaturing discontinuous-PAGE exhibited a molecular mass of about 80 kDa by reducing SDS-PAGE. However, when a partially purified enzyme preparation was subjected to gel filtration on Sephacryl S-300, the enzyme activity eluted in the void volume, which indicated that the native enzyme existed as an oligomer. The purified enzyme showed Km values of 9.15 microM for PAPS and 15.38 mM for 2'-FL at the optimum pH value of 7.4. The substrate specificity of the purified enzyme was evaluated with various sugars that are structurally similar to sialyl LewisX (sLeX). Results indicated that 3'-sialyllactose and lactose were efficient acceptors of sulfation, whereas 6'-sialyllactose and 6'-sialyllactosamine were poor substrates for this sulfotransferase. Further, the reaction product analysis revealed that the sulfate substitution, when using 2'-FL as the substrate, was at the C-6 position of the galactose residue. Coincidentally, a similar enzyme activity was also found in porcine lymphoid tissues such as, lymph nodes (peripheral and mesenteric) and spleen. Collectively, these findings suggest that this enzyme might be involved in the synthesis of the ligand for L-selectin.  相似文献   

7.
3-Fucosyllactose (3-FL) is one of the major fucosylated oligosaccharides in human milk. Along with 2′-fucosyllactose (2′-FL), it is known for its prebiotic, immunomodulator, neonatal brain development, and antimicrobial function. Whereas the biological production of 2′-FL has been widely studied and made significant progress over the years, the biological production of 3-FL has been hampered by the low activity and insoluble expression of α-1,3-fucosyltransferase (FutA), relatively low abundance in human milk oligosaccharides compared with 2′-FL, and lower digestibility of 3-FL than 2′-FL by bifidobacteria. In this study, we report the gram-scale production of 3-FL using E. coli BL21(DE3). We previously generated the FutA quadruple mutant (mFutA) with four site mutations at S46F, A128N, H129E, Y132I, and its specific activity was increased by nearly 15 times compared with that of wild-type FutA owing to the increase in kcat and the decrease in Km. We overexpressed mFutA in its maximum expression level, which was achieved by the optimization of yeast extract concentration in culture media. We also overexpressed L-fucokinase/GDP- L -fucose pyrophosphorylase to increase the supply of GDP-fucose in the cytoplasm. To increase the mass of recombinant whole-cell catalysts, the host E. coli BW25113 was switched to E. coli BL21(DE3) because of the lower acetate accumulation of E. coli BL21(DE3) than that of E. coli BW25113. Finally, the lactose operon was modified by partially deleting the sequence of LacZ (lacZΔm15) for better utilization of D -lactose. Production using the lacZΔm15 mutant yielded 3-FL concentration of 4.6 g/L with the productivity of 0.076 g·L−1·hr−1 and the specific 3-FL yield of 0.5 g/g dry cell weight.  相似文献   

8.
Using a set of methods (C-banding, DAPI-staining, fluorescence hybridization in situ (FISH) with probes of 26S and 5S rDNA, and analysis of meiosis), the first comparative cytogenetic study of three species of Macleaya, producers of complex isoquinoline alkaloids, cordate Macleaya cordata (Willd.) R. Br. (2n = 20), small-fruited Macleaya microcarpa (Maxim.) Fedde (2n = 20) and Macleaya kewensis Turrill (2n = 20), was first carried out. On the basis of morphometric analysis, formulas of karyotypes were made for each species. Species ideograms for M. cordata, M. microcarpa, and M. kewensis were constructed taking into account the polymorphic variants of the C-banding patterns and indicating the location of 26S and 5S rDNA sites. A comparative study revealed that the karyotypes of M. microcarpa and M. kewensis have more in common with each other than with M. cordata. Analysis of meiotic chromosomes suggests of genetic stability of Macleaya genomes. The results of chromosome analysis were used to confirm the close relationship of Macleaya and to clarify their phylogenetic relationships.  相似文献   

9.
A thermosensitive uracil requiring mutant of Bacillus subtilis Marburg 168 thy trp2 ts42 was examined as to the colony forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in the modified Woese’s (MW) medium. However, the cells retained viability when sodium succinate or potassium chloride was added to the medium at that temperature although uracil deficiency was unchanged. A little but significant incorporation of adenine-8-14C into RNA still continued even after the incorporation of N-acetyl-3H-d-glucosamine into acid insoluble fraction of the cells terminated in the MW medium at 48°C. Both incorporations as well as increase of absorbance were slowed down in the presence of sodium succinate at 48°C. This mutant, ts42, was more sensitive to deoxycholate (DOC) than the parent strain. The restoration of colony forming ability after the temperature shift back from 48 to 37°C was suppressed by the addition of DOC to the medium. However, the cell became resistant to DOC when uracil was added to the medium prior to the temperature shift.  相似文献   

10.
The -amylase of Micromonospora melanosporea was produced extracellularly during batch fermentation in a 5.0-1 fermentor. The absence of an organic nitrogen source in its growth medium facilitated subsequent purification of the enzyme by ammonium sulphate fractionation and two consecutive Superose-12 gel-filtration steps. The enzyme exhibited maxima for activity at pH 7.0 and 55° C and was 72% stable at pH 6.0–12.0 for 30 min at 40° C. It had a relative molecular mass of 45 000 and an isoelectric point at pH 7.6. The enzyme catalyses the conversion of starch to maltose (53%, w/w) as the predominant final end-product. Initial hydrolysis of this substrate, however, gave rise to the formation of maltooligosaccharides in the range maltotriose to maltohexaose. Maximum yields of these intermediate sugars accumulated to between 31 and 42% (w/w) as the reaction proceeded. The action of the M. melanosporea amylase on high concentrations of saccharides larger than maltotriose resulted in the formation of mainly maltose and maltotriose without concomitant glucose production. A combination of hydrolytic and transfer events is postulated to be responsible for this phenomenon and for the high maltose levels achieved. Correspondence to: C. T. Kelly  相似文献   

11.
The Gō-like models of proteins are constructed based on the knowledge of the native conformation. However, there are many possible choices of a Hamiltonian for which the ground state coincides with the native state. Here, we propose to use experimental data on protein stretching to determine what choices are most adequate physically. This criterion is motivated by the fact that stretching processes usually start with the native structure, in the vicinity of which the Gō-like models should work the best. Our selection procedure is applied to 62 different versions of the Gō model and is based on 28 proteins. We consider different potentials, contact maps, local stiffness energies, and energy scales—uniform and nonuniform. In the latter case, the strength of the nonuniformity was governed either by specificity or by properties related to positioning of the side groups. Among them is the simplest variant: uniform couplings with no i, i + 2 contacts. This choice also leads to good folding properties in most cases. We elucidate relationship between the local stiffness described by a potential which involves local chirality and the one which involves dihedral and bond angles. The latter stiffness improves folding but there is little difference between them when it comes to stretching.  相似文献   

12.
《Phytochemistry》1987,26(5):1299-1300
The effect ofpH on Km and Vmax values of coconut α-galactosidase indicates the involvement of two ionizing groups with pKa values of 3.5 and 6.5 in catalysis. Chemical modification has indicated the presence of two carboxyl groups, a tryptophan and a tyrosine, at or near the active site of α-galactosidase. Based on these facts a new mechanism of action for α-galactosidase is proposed in which the ionizing group with a pKa of 3.5 is a carboxyl group involved in stabilizing a carbonium ion intermediate and the ionizing group with a pKa of 6.5 is a carboxyl group perturbed due to the presence of a hydrophobic residues in its vicinity which donates a H+ ion in catalysis.  相似文献   

13.
14.
The complementary fragments of human Hb α, α1–30, and α31–141 are spliced together by V8 protease in the presence of 30%n-propanol to generate the full-length molecule (Hb α-semisynthetic reaction). Unlike the other protease-catalyzed protein/peptide splicing reactions of fragment complementing systems, the enzymic condensation of nonassociating segments of Hb α is facilitated by the organic cosolvent induced α-helical conformation of product acting as the “molecular trap” of the splicing reaction. The segments α24–30 and α31–40 are the shortest complementary segments that can be spliced by V8 protease. In the present study, the chemistry of the contiguous segment (product) α24–40 has been manipulated by engineering the amino acid replacements to the positions α27 and α31 to delineate the structural basis of the molecular trap. The location of Glu27 and Arg31 residues in the contiguous segment α24–40 (as well as in other larger segments) is ideal to generate (i, i+4) side-chain carboxylate-guanidino interaction in its α-helical conformation. The amino acid residue replacement studies have confirmed that the side chains at α27 and α31 facilitate the semisynthetic reaction. The relative influence of the substitute at these sites on the splicing reaction depends on the chemical nature of the side chain and the location. The γ-carboxylate guanidino side-chain interaction appears to contribute up to a maximum of 85% of the thermodynamic stability of the molecular trap. The studies also demonstrate that the thermodynamic stability of the molecular trap is determined by two interdependent conformational aspects of the peptide. One is an amino acid-sequence-specific event that facilitates the induction of an α-helical conformation to the contiguous segment in the presence of organic cosolvent that imparts some amount of protease resistance to Glu30-Arg31 peptide bond. The second structural aspect is a site-specific event, ani, i+4 side-chain interaction in the α-helical conformation of the peptide which imparts an additional thermodynamic stability to the molecular trap. The results suggest that conformationally driven “molecular traps” of protease-mediated ligation reactions of peptides could be designed into products to facilitate the modular assembly of peptides/proteins.  相似文献   

15.
CIRL-1 also called latrophilin 1 or CL belongs to the family of adhesion G protein-coupled receptors (GPCRs). As all members of adhesion GPSR family CIRL-1 consists of two heterologous subunits, extracellular hydrophilic p120 and heptahelical membrane protein p85. Both CIRL-1 subunits are encoded by one gene but as a result of intracellular proteolysis of precursor, mature receptor has two-subunit structure. It was also shown that a minor portion of the CIRL-1 receptor complexes dissociates, producing the soluble receptor ectodomain, and this dissociation is due to the second cleavage at the site between the site of primary proteolysis and the first transmembrane domain. Recently model of independent localization p120 and p85 on the cell surface was proposed. In this article we evaluated the amount of p120-p85 complex still presented on the cellular membrane and confirmed that on cell surface major amount of mature CIRL-1 presented as a p120-p85 subunit complex.  相似文献   

16.
The kinetics of renaturation of the β2-subunit of Escherichia coli tryptophan-synthetase (l-serine hydrolyase (adding indole) E.C. 4.2.1.20) and those of its two proteolytic fragments F1 and F2 are studied and compared. Steps corresponding to the refolding of F1, to the association of the folded F1 and F2 fragments, and to an isomerization of the associated protein are identified. These steps are ordered on the pathway of renaturation and some of their kinetic parameters are determined. This leads to a tentative kinetic model for the renaturation of nicked-β2 starting from the denatured F1 and F2 fragments.The step corresponding to the refolding of the F1 domain, as well as that corresponding to the last rate-limiting isomerization leading to the native protein, is shown to be the same in the refolding of the entire, uncleaved β2-protein. It is concluded that the refolded F1 fragment corresponds to a folding intermediate on the pathway of renaturation of the β2-subunit.  相似文献   

17.
18.
ObjectiveMost of the studies about trapeziometacarpal joint assume that it exhibits only two independent degrees of freedom, but the experimental or theoretical support for considering a two-degrees of freedom model is not always clear.Materials and methodsTherefore, an in vitro kinematic study has been designed to demonstrate, from experimental data, that only two of the trapeziometacarpal degrees of freedom (i.e., flexion/extension and adduction/abduction) are non-null and independent. Several movements of maximal amplitude in flexion, abduction and circumduction have been realized and the relative position and orientation of the segment coordinate system embedded on the first metacarpal with respect to that embedded on the trapezium have been collected using electromagnetic sensors. The trapeziometacarpal rotations have been described using a joint coordinate system and the joint displacements have been evaluated on the axes of this coordinate system.ResultsThe root mean square (RMS) values of the joint displacement components have been found small enough to assume that the trapeziometacarpal joint has no translation degrees of freedom. A paraboloid coupling equation has been found between the internal/external rotation angle and the two other, flexion/extension and adduction/abduction, angles.ConclusionThus, this study demonstrates that the trapeziometacarpal joint has only two independent rotational degrees of freedom, and further, the described methodology could also be used to determine the coupling laws between degrees of freedom of various joints.  相似文献   

19.
20.
(1) Mixed bile salt micelle solubilized either cholesterol or β-sitosterol to a comparable extent. When added simultaneously, β-sitosterol restricted the micellar solubility of cholesterol. (2) β-Sitosterol also reduced the cholesterol content in the aqueous (micellar) phase of the intestinal contents of rats, the extent of reduction being comparable with that observed in vitro. The intestinal uptake of cholesterol in vivo was equivalent to the micellar incorporation of cholesterol both in vitro and in vivo. (3) β-Sitosterol had no inhibitory effect on cholesterol absorption from the micellar solution in jejunal loops in situ, whereas the rate of β-sitosterol uptake was only about one-fifth that of cholesterol. (4) The intestinal uptake of β-sitosterol intubated into the stomach of rats was about one-fifth that of cholesterol. The intestinal brush-border membrane discriminated these sterols. These results suggest that the restriction of the micellar solubility of cholesterol, rather than the inhibition of uptake from brush-border membrane, is the major determinant for the interference of β-sitosterol with cholesterol absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号