首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2007,42(1):77-82
The production of C595 diabody fragment (dbFv) in Escherichia coli (E. coli) HB2151 clone has been explored. The comparison of fermentation processes mode demonstrated that a higher biomass inoculum operation enhanced C595 dbFv production. It was demonstrated that a concentration of 12.1 mg l−1 broth of dbFv and a cell concentration of 23.6 g l−1 broth were achieved at the end of 75 l fermentation.  相似文献   

2.
This research was performed based on a comparative study on fungal lipid production by a locally isolated strain Cunninghamella bainieri 2A1 in batch culture and repeated-batch culture using a nitrogen-limited medium. Lipid production in the batch culture was conducted to study the effect of different agitation rates on the simultaneous consumption of ammonium tartrate and glucose sources. Lipid production in the repeated-batch culture was studied by considering the effect of harvesting time and harvesting volume of the culture broth on the lipid accumulation. The batch cultivation was carried out in a 500 ml Erlenmeyer flask containing 200 ml of the fresh nitrogen-limited medium. Microbial culture was incubated at 30 °C under different agitation rates of 120, 180 and 250 rpm for 120 h. The repeated-batch culture was performed at three harvesting times of 12, 24 and 48 h using four harvesting cultures of 60%, 70%, 80% and 90%. Experimental results revealed that nitrogen source (ammonium tartrate) was fully utilized by C. bainieri 2A1 within 24 h in all agitation rates tested. It was also observed that a high amount of glucose in culture medium was consumed by C. bainieri 2A1 at 250 rpm agitation speed during the batch fermentation. Similar results showed that the highest lipid concentration of 2.96 g/L was obtained at an agitation rate of 250 rpm at 120 h cultivation time with the maximum lipid productivity of 7.0 × 10−2 mg/ml/h. On the other hand, experimental results showed that the highest lipid concentration produced in the repeated-batch culture was 3.30 g/L at the first cycle of 48 h harvesting time using 70% harvesting volume, while 0.23 g/L gamma-linolenic acid (GLA) was produced at the last cycle of 48 h harvesting time using 80% harvesting volume.  相似文献   

3.
《Process Biochemistry》2007,42(6):1033-1038
Valienamine is an important medicinal intermediate with broad use in the synthesis of some stronger α-glucosidase inhibitors. In order to improve valienamine concentration in the fermentation broth and make the downstream treatment easy, a fed-batch process for the enhanced production of valienamine by Stenotrophomonas maltrophilia in a stirred tank bioreactor was developed. Results showed that supplementation of validamycin A in the process of cultivation could increase the valienamine concentration. One-pulse feeding was observed to be the best strategy. The maximum valienamine concentration of 2.35 g L−1 was obtained at 156 h when 86.4 g of validamycin A was added to a 15-L bioreactor containing 8 L fermentation medium with one-pulse feeding. The maximum valienamine concentration had a great improvement and was increased above 100% compared to batch fermentation in the stirred tank bioreactor. The pH-controlled experiments showed that controlling the pH in the process of one-pulse feeding fermentation had not obvious effect on the production of valienamine.  相似文献   

4.
Traditional batch fermentation leads to a higher energy consumption and lower production capability because of longer culture time. In this work, a pilot scale bioreactor composed of a 3000 L fermentor and external ceramic microfiltration equipment was used to perform cell-recycle fermentation. Repeat feeding medium was also used to relieve the substrate inhibition. In such pilot system, the maximum yield and productivity of l(+)-lactic acid production reached 157.22 ± 3.42 g/L and 8.77 ± 0.15 g/L/h which were 4.23% and 315.64% higher than those of batch fermentation, respectively, when equal amount of sugar was consumed. The cost of l(+)-lactic acid production was successfully reduced about two-thirds by the increase of yield and productivity. 12 rounds of cell-recycle fermentations were successfully achieved in the pilot system. The membrane filtration productivity reached to 61.27 ± 2.74 L/m2/h which increased 172.80%, while the cell damaging rate dropped to 3.88 ± 0.18% which decreased 85.77%, compared with those of the ultrafiltration. Furthermore, the ceramic microfiltration membrane showed advantages in tolerance for the temperature, pressure and acid, compared with the organic ultrafiltration membrane. The experimental results indicated that the method could give a reference for low cost production of l(+)-lactic acid in an industrial scale.  相似文献   

5.
This work describes the use of nutrient limitations with Trichoderma reesei Rut C-30 to obtain a prolonged stationary phase cellulase production. This period of non-growth may allow for dependable cellulase production, extended fermentation periods, and the possibility to use pellet morphology for easy product separation. Phosphorus limitation was successful in halting growth and had a corresponding specific cellulase production of 5 ± 2 FPU/g-h. Combined with the addition of Triton X-100 for fungal pellet formation and low shear conditions, a stationary phase cellulase production period in excess of 300 h was achieved, with a constant enzyme production rate of 7 ± 1 FPU/g-h. While nitrogen limitation was also effective as a growth limiter, it, however, also prevented cellulase production.  相似文献   

6.
《Process Biochemistry》2014,49(7):1182-1188
An efficient method for removing microbial cells and macromolecular impurities and purification of surfaction from fermentation broth produced by Bacillus amyloliquefaciens fmb50 was carried out in this study. Among three inorganic flocculants and a macromolecular flocculants, the combination use of CaCl2 and Na2HPO4 was the most effective separation process. Addition of 50% ethanol into fermentation broth could not only disrupt the surfactin micells, but also promote the permeating of surfactin in filtration. The flocculation condition was optimized by an L9 (34) orthogonal design. The light transmittance, surfactin recovery rate, protein removal rate and filtration flux could reach to 96.3%, 95.31%, 56.59% and 3204.41 L m−2 h−1 respectively, the surfactin purity reached to 79.5% and the residual protein was 8.1% in separated product under the optimal flocculation condition (flocculants dosage 0.5%, pH 5.0, and temperature 35 °C). Validation test also demonstrated stable results under the optimal conditions. Due to higher efficiency, lower cost and scale-up more easily of flocculation and filtration processes, it is feasible to separate surfactin from fermentation broth.  相似文献   

7.
This study investigated biocoagulation of dairy process wastewater with a new system of the micro-aerobic sequencing batch reactor (micro-aerobic SBR) at a batch bench scale. Lactobacillus casei TISTR 1500 was inoculated to produce acid coagulants under non-sterile acid conditions. Colloidal proteins were removed by employing a solid–liquid separation step as a pre-treatment. The micro-aerobic SBR process had the efficiencies of organic reduction with 73.6 ± 5.9%, 90.1 ± 1.3%, and 85.7 ± 0.6% of chemical oxygen demand (COD), proteins, and sugars without adding external coagulant, and flocculant, respectively. Sustained acid fermentation was achieved for at least 150 cycles by applying an indigenous fill-react-settle-draw-idle sequence in the micro-aerobic SBR process and the use of different solid retention times at 3, 6, 9, 12 and 15 d, consecutively. The micro-aerobic SBR system was able to support lactic acid bacteria (LAB) growth with long SRT (12 and 15 d), due to at least 3 factors: the large inoculum size employed, relatively high concentration of lactic acid produced, and the change in pH during the restoring stage. Current process offered a possible alternative to the more costly chemical and other biological pre-treatments.  相似文献   

8.
In this work, straw hydrolysates were used to produce succinic acid by Actinobacillus succinogenes CGMCC1593 for the first time. Results indicated that both glucose and xylose in the straw hydrolysates were utilized in succinic acid production, and the hydrolysates of corn straw was better than that of rice or wheat straw in anaerobic fermentation of succinic acid. However, cell growth and succinic acid production were inhibited when the initial concentration of sugar, which was from corn straw hydrolysate (CSH), was higher than 60 g l?1. In batch fermentation, 45.5 g l?1 succinic acid concentration and 80.7% yield were attained after 48 h incubation with 58 g l?1 of initial sugar from corn straw hydrolysate in a 5-l stirred bioreactor. While in fed-batch fermentation, concentration of succinic acid achieved 53.2 g l?1 at a rate of 1.21 g l?1 h?1 after 44 h of fermentation. Our work suggested that corn straw could be utilized for the economical production of succinic acid by A. succinogenes.  相似文献   

9.
Optimisation of nutrient feeding was developed to overcome the limitation in batch fermentation and to increase the CGTase production from Bacillus sp. TS1-1 in fed batch fermentation. Optimisation of the C/N ratio in the feed stream was conducted in a 5 l fermenter, where feeding was initiated at constant rate of 0.02 h−1. In our initial screening process, the addition of nitrogen source boosted the growth of the microbes, but on the other hand reduced the CGTase production. The amount of tapioca starch and yeast extract was optimised in order to obtain a sufficient growth and thus, increased the CGTase production. Results were analysed using three-dimensional response surface plot, and the optimised values of carbon and nitrogen concentration of 3.30% (w/v) and 0.13% (w/v) were obtained, respectively. CGTase activity increased up to 80.12 U/ml, which is 13.94% higher as compared to batch fermentation (70.32 U/ml). This also led to 14.54% increment of CGTase production in fed batch culture as compared to the production before the optimisation. The CGTase activity obtained was close to the predicted value, which is 78.05 U/ml.  相似文献   

10.
Terrein has potential application in the fields of medicine, cosmetology and agriculture, however, the chemical synthesis of terrein with single configuration is a difficult task, and the biosynthesis of terrein always results in low production (ca. 0.33–400 mg/L). In this study, we reported an Aspergillus terreus strain PF26 which could produce (+)-terrein on a high level. After the selection of a suitable basic medium, the component concentrations were optimized using Plackett–Burman design and response surface methodology. Consequently, an optimal medium containing 28.41 g glucose, 23.18 g maltose, 20.00 g mannitol, 8.52 g malt extract, 10.00 g monosodium glutamate 10.00 g NH4Cl in 1 L ASW was obtained, and a high (+)-terrein production of 3.71 g/L fermentation broth was achieved, which represents the highest fermentation production of (+)-terrein to date. The result highlighted the industry's potential of A. terreus strain PF26 in the production of bioactive (+)-terrein on a large-scale.  相似文献   

11.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

12.
A perfluoropolymer (PFP) membrane has been prepared for use in vapor permeation to separate aqueous ethanol mixtures produced from rice straw with xylose-assimilating recombinant Saccharomyces cerevisiae. PFP membranes commonly have been used for dehydration process and possess good selectivity and high permeances. The effects of by-products during dilute acid pretreatment, addition of yeast extract, and ethanol fermentation on PFP membrane performance were investigated. While feeding mixtures of ethanol (90 wt%) in water, to which individual by-products (0.1–2 g/L) were added, the PFP membrane demonstrated no clear change in permeation rate (439–507 g m−2 h−1) or separation factor (14.9–23.5) from 2 to 4 h of the process. The PFP membrane also showed no clear change in permeation rate (751–859 g m−2 h−1) or separation factor (12.5–13.8) while feeding the mixture (final ethanol conc.: 61 wt%) of ethanol and distillation of the fermentation broth using a suspended fraction of dilute acid-pretreated rice straw for 20 h. These results suggest that the PFP membrane can tolerate actual distillation liquids from ethanol fermentation broth obtained from lignocellulosic biomass pretreated with dilute acid.  相似文献   

13.
The perennial herbaceous crop Arundo donax is a potential feedstock for second-generation bioethanol production. In the present work, two different process options were investigated for the conversion of two differently steam-pretreated batches of A. donax. The pretreated raw material was converted to ethanol with a xylose-consuming Saccharomyces cerevisiae strain, VTT C-10880, by applying either separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF). The highest overall ethanol yield and final ethanol concentration were achieved using SHF (0.27 g g?1 and 20.6 g L?1 compared to 0.24 g g?1 and 19.0 g L?1 when SSF was used). The performance of both SHF and SSF was improved by complementing the cellulolytic enzymes with hemicellulases. The higher amount of acetic acid in one of the batches was shown to strongly affect xylose consumption in the fermentation. Only half of the xylose was consumed when batch 1 (high acetic acid) was fermented, compared to that 94% of the xylose was consumed in fermentation of batch 2 (lower acetic acid). Furthermore, the high amount of xylooligomers present in the pretreated materials considerably inhibited the enzymatic hydrolysis. Both the formation of xylooligomers and acetic acid thus need to be considered in the pretreatment process in order to achieve efficient conversion of A. donax to ethanol.  相似文献   

14.
The production of pectinase by Aspergillus niger LB-02-SF was focused on a submerged cultivation, before it was evaluated in a solid-state process. This study involved the creation of a defined culture medium and an evaluation of the effects of the addition of the enzyme inducer, citrus pectin, to the medium after the intense biomass growth phase. A culture medium formulated without glucose allowed a reduction of biomass growth and greater pectinase production, facilitated by the control of process parameters such as mixing, pH and oxygen supply. The addition of pectin when a minimum pH of 2.7 was reached at 22 h of cultivation did not affect fungal growth. The maximum biomass concentration was 11.0 g/L at 48 h, a value similar to that observed for the control, in which pectin was included in the medium at the beginning of the process (11.5 g/L, at 41 h). However, this condition favored the production of 14 U/mL pectinase, which was approximately 40% higher than the value observed for the control. These results show that pectinase production by A. niger in a submerged cultivation is strongly affected by the medium composition as well as the delayed addition of pectin to the fermentation broth.  相似文献   

15.
Single inorganic carbon source was used for production of chemicals and fuels via fermentation processes. Clostridium ljungdahlii, a strictly anaerobic autotrophic bacterium, was grown on synthesis gas to produce acetate and ethanol from gaseous substrates. C. ljungdahlii was grown on a various concentrations of carbon monoxide with synthesis gas total pressures of 0.8–1.8 atm with an interval of 0.2 atm. The cell and product yields were 0.015 g cell/g CO and 0.41 g acetate/g CO, respectively. Formation of acetate was steady and the production trend was about the same for all of the gases initial pressure and at constant cell density. The ethanol concentration was enhanced by the initial presence of hydrogen and carbon dioxide in the liquid phase. There was no substrate inhibition while C. ljungdahlii was grown in the batch fermentation, even at high system pressure of 1.6 and 1.8 atm. A desired product molar ratio of ethanol:acetate (5:1) was achieved with total gas pressure of 1.6 and 1.8 atm.  相似文献   

16.
《Process Biochemistry》2010,45(2):230-238
The effectiveness of bioremediation technology in the removal of carbofuran from contaminated soil using a bioslurry phase sequencing batch reactor (SBR) was investigated. A 2-L laboratory glass bottle was used as a bioreactor with a working volume of 1.5 L at room temperature (27 ± 2 °C). One total cycle period of the SBR was comprised of 1 h of fill phase, 82 h of react phase, and 1 h of decant phase. The carbofuran concentration in the soil was 20 mg/kg soil. A carbofuran degrader isolated from carbofuran phytoremediated soil, namely Burkholderia cepacia PCL3 (PCL3) immobilized on corncob, was used as the inoculum. The results revealed that bioaugmentation treatment (addition of PCL3) gave the highest percentage of carbofuran removal (96.97%), followed by bioaugmentation together with biostimulation (addition of molasses) treatment (88.23%), suggesting that bioremediation was an effective technology for removing carbofuran in contaminated soil. Abiotic experiments, i.e. autoclaved soil slurry with corncob and no PCL3 treatment and autoclaved soil slurry with no PCL3 treatment, could adsorb 31.86% and 7.70% of carbofuran, respectively, which implied that soil and corncob could act as sorbents for the removal of carbofuran.  相似文献   

17.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

18.
An experimental method for producing ethanol continuously was designed and tested with a cell-recycling two-tank system, which was composed of two fermentors, each of which was individually equipped with a settler for recycling flocculent yeast. This system was effective for the continuous fermentation of ethanol from sucrose at high cell-recycling (r = 0.8–0.9) and dilution (up to 0.48 h?1) rates. The system has several advantages; the high cell concentration in the fermentors and relief of substrate and product inhibition. Thus, the enhanced productivity using this continuous fermentation with the two-tank cell-recycling system was significantly higher compared with that of the batch fermentation. The results indicate that increased recycling ratios caused an increase in biomass concentration and subsequently, product concentration in the tank. The ethanol productivity increased with the dilution rate, but higher dilution rates could render increasing amounts of sugar unconverted. Continuous fermentation with the sugar feed concentration of 160 g/l at r = 0.9 and dilution rate of 0.2 h?1 achieved the highest productivity with less than 2% of the unconverted sugar in the product steam. Under the same cell recycling ratios a productivity range of 6.9–7.5 g/l h?1 could be achieved with feeding concentrations of 80–200 g/l, while batch fermentation at these sugar concentrations led to productivities of 3.85–4.48 g/l h?1.  相似文献   

19.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

20.
The possibility of continuous extraction of 1,3-propanediol in a experimental packed column was investigated using a salting-out extraction system of dipotassium phosphate/ethanol. Mass transfer of 1,3-propanediol takes place from the dispersed phase (salt-rich solution) to the continuous phase (ethanol). The influences of flow rate of dispersed phase and size of packing material on partition coefficient and recovery of 1,3-propanediol were investigated and the results were compared with those obtained in spray column and test tube. Furthermore, the influences of various system compositions on hold up of dispersed phase, mass transfer coefficient, and system stability were also studied in the column packed by stainless steel Dixon 3 × 3 mm. It was found that the packed column showed a good extraction efficiency and stability. Besides, 1,3-propanediol recovery of 90.30% was obtained during a 11 h continuous operation when the real fermentation broth was used. At the same time, 94.4% of phosphate could be recovered when 0.2 volume of anhydrous ethanol was added into the raffinate phase at pH 4.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号