首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.  相似文献   

2.
Members of the LC3/GABARAP family of ubiquitin‐like proteins function during autophagy by serving as membrane linked protein‐binding platforms. Their C‐termini are physically attached to membranes through covalent linkage to primary amines on lipids such as phosphatidylethanolamine, while their ubiquitin‐like fold domains bind “LIR” (LC3‐Interacting Region) sequences found within an extraordinarily diverse array of proteins including regulators of autophagy, adaptors that recruit ubiquitinated cargoes to be degraded, and even proteins controlling processes at membranes that are not associated with autophagy. Recently, LC3/GABARAP proteins were found to bind the ubiquitin E3 ligase NEDD4 to influence ubiquitination associated with autophagy in human cell lines. Here, we use purified recombinant proteins to define LC3B interactions with a specific LIR sequence from NEDD4, present a crystal structure showing atomic details of the interaction, and show that LC3B‐binding can steer intrinsic NEDD4 E3 ligase activity. The data provide detailed molecular insights underlying recruitment of an E3 ubiquitin ligase to phagophores during autophagy.  相似文献   

3.
The E3 ubiquitin ligase NEDD4 has been intensively studied in processes involved in viral infections, such as virus budding. However, little is known about its functions in bacterial infections. Our investigations into the role of NEDD4 in intracellular bacterial infections demonstrate that Mycobacterium tuberculosis and Listeria monocytogenes, but not Mycobacterium bovis BCG, replicate more efficiently in NEDD4 knockdown macrophages. In parallel, NEDD4 knockdown or knockout impaired basal macroautophagy/autophagy, as well as infection-induced autophagy. Conversely, NEDD4 expression promoted autophagy in an E3 catalytic activity-dependent manner, thereby restricting intracellular Listeria replication. Mechanistic studies uncovered that endogenous NEDD4 interacted with BECN1/Beclin 1 and this interaction increased during Listeria infection. Deficiency of NEDD4 resulted in elevated K48-linkage ubiquitination of endogenous BECN1. Further, NEDD4 mediated K6- and K27- linkage ubiquitination of BECN1, leading to elevated stability of BECN1 and increased autophagy. Thus, NEDD4 participates in killing of intracellular bacterial pathogens via autophagy by sustaining the stability of BECN1.  相似文献   

4.
神经前体细胞表达发育性下调蛋白4(neural precursor cell expressed,developmentally down-regulated protein 4,NEDD4-1,部分文章也称NEDD4)是近年来才备受关注的肿瘤相关基因,属于E3 HECT(homologous to E6 associated protein C terminus,E6蛋白c端同源基因)泛素连接酶NEDD4样家族成员。泛素连接酶,能够参与多种蛋白质的泛素化、溶酶体及蛋白酶体的降解、胞核-胞质转位等,间接影响不同恶性肿瘤的多种信号通路。随着大量NEDD4-1与肿瘤相关实验的不断深入,目前已发现其可通过调控细胞周期、癌细胞侵袭转移、拮抗耐药性等许多途径影响肿瘤的生物学行为。在消化系统肿瘤中,NEDD4-1主要通过PTEN/PI3K/AKT、TGF-β、Hippo、LDLRAD4等多条通路促进肝细胞癌的增殖、侵袭和迁移能力;在胰腺癌中发现,NEDD4-1在PI3K/AKT信号通路中发挥癌基因作用,但在与Myc-SIRT2所形成的信号环路中,却发挥抑癌基因的作用;在胃癌和结直肠癌中,NEDD4-1所参与的信号通路与其他消化系统肿瘤均不相同,NEDD4-1能独立于PTEN/PI3K/AKT通路而发挥促进胃癌恶化、转移(EGFR信号通路)和抑制结直肠癌肿瘤生长(WNT信号通路)的作用。NEDD4-1已经成为人们治愈肿瘤的热门研究方向。本文通过系统总结NEDD4-1在不同消化系统肿瘤中的功能、信号通路和潜在抑制剂等,进行探讨NEDD4-1与不同信号通路的关系,旨为临床在癌症治疗领域提供重要的参考数据。  相似文献   

5.
Abstract

The ATP Binding Cassette transporter ABCB1 can export the neurotoxic peptide β-amyloid from endothelial cells that line the blood-brain barrier (BBB). This has the potential to lower cerebral levels of β-amyloid, but ABCB1 expression in the BBB appears to be progressively reduced in patients with Alzheimer’s disease. The surface density of many membrane proteins is regulated by ubiquitination catalyzed by ubiquitin E3 ligases. In brain capillaries of mice challenged with β-amyloid ex vivo, we show that the level of the ubiquitin ligase Nedd4 increases concomitant with reduction in Abcb1. In vitro we show that human ABCB1 is a substrate for human NEDD4-1 ligase. Recombinant ABCB1 was purified from Sf21 insect cells and incubated with recombinant NEDD4-1 purified from Escherichia coli. The treated ABCB1 had reduced mobility on SDS-PAGE, and mass spectrometry identified eight lysine residues, K271, K272, K575, K685, K877, K885, K887 and K1062 that were ubiquitinated by NEDD4-1. Molecular modelling showed that all of the residues are exposed on the surface of the intracellular domains of ABCB1. K877, K885 and K887 in particular, are located in the intracellular loop of transmembrane helix 10 (TMH10) in close proximity, in the tertiary fold, to a putative NEDD4-1 binding site in the intracellular helix extending from TMH12 (PxY motif, residues 996–998). Transient expression of NEDD4-1 in HEK293 Flp-In cells stably expressing ABCB1 was shown to reduce the surface density of the transporter. Together, the data identify this ubiquitin ligase as a potential target for intervention in the pathophysiology of Alzheimer’s disease.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号