首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SC35 belongs to the family of SR proteins that regulate alternative splicing in a concentration-dependent manner in vitro and in vivo. We previously reported that SC35 is expressed through alternatively spliced mRNAs with differing 3' untranslated sequences and stabilities. Here, we show that overexpression of SC35 in HeLa cells results in a significant decrease of endogenous SC35 mRNA levels along with changes in the relative abundance of SC35 alternatively spliced mRNAs. Remarkably, SC35 leads to both an exon inclusion and an intron excision in the 3' untranslated region of its mRNAs. In vitro splicing experiments performed with recombinant SR proteins demonstrate that SC35, but not ASF/SF2 or 9G8, specifically activates these alternative splicing events. Interestingly, the resulting mRNA is very unstable and we present evidence that mRNA surveillance is likely to be involved in this instability. SC35 therefore constitutes the first example of a splicing factor that controls its own expression through activation of splicing events leading to expression of unstable mRNA.  相似文献   

2.
3.
4.
The goal of functional genomics is to determine the function of each protein encoded by an organism. Typically, this is done by inactivating individual genes and, subsequently, analyzing the phenotype of the modified organisms. In higher eukaryotes, where a tremendous amount of alternative splicing occurs, such approaches are not feasible because they have the potential to simultaneously affect multiple proteins that could have quite distinct and important functions. Thus, it is necessary to develop techniques that inactivate only a subset of proteins synthesized from genes encoding alternatively spliced mRNAs. Here we demonstrate that RNA interference (RNAi) can be used to selectively degrade specific alternatively spliced mRNA isoforms in cultured Drosophila cells. This is achieved by treating the cells with double-stranded RNA corresponding to an alternatively spliced exon. This technique may prove to be a powerful tool to assess the function of proteins synthesized from alternatively spliced mRNAs. In addition, these results have implications regarding the mechanism of RNAi in Drosophila.  相似文献   

5.
6.
Alternative mRNA splicing is becoming increasingly recognized as an important mechanism for the generation of structural and functional diversity in proteins. Recent estimations predict that approximately 50% of all eukaryotic proteins can be alternatively spliced. Several lines of evidence suggest that alternative mRNA splicing results in small changes in protein structure and is likely to fine-tune the function and specificity of the affected protein. However, knowledge of how alternative splicing regulates cellular processes on the molecular level is still limited. It is only recently that structures of alternatively spliced proteins have been solved. These studies have shown that alternative splicing affects the structure not only in the vicinity of the splice site but also at long distance.  相似文献   

7.
8.
9.
10.
Approximately half of all human genes undergo alternative mRNA splicing. This process often yields homologous gene products exhibiting diverse functions. Alternative splicing of APOBEC3G (A3G) and APOBEC3F (A3F), the major host resistance factors targeted by the HIV-1 protein Vif, has not been explored. We investigated the effects of alternative splicing on A3G/A3F gene expression and antiviral activity. Three alternatively spliced A3G mRNAs and two alternatively spliced A3F mRNAs were detected in peripheral blood mononuclear cells in each of 10 uninfected, healthy donors. Expression of these splice variants was altered in different cell subsets and in response to cellular stimulation. Alternatively spliced A3G variants were insensitive to degradation by Vif but displayed no antiviral activity against HIV-1. Conversely, alternative splicing of A3F produced a 37-kDa variant lacking exon 2 (A3FΔ2) that was prominently expressed in macrophages and monocytes and was resistant to Vif-mediated degradation. Alternative splicing also produced a 24-kDa variant of A3F lacking exons 2–4 (A3FΔ2–4) that was highly sensitive to Vif. Both A3FΔ2 and A3FΔ2–4 displayed reduced cytidine deaminase activity and moderate antiviral activity. These alternatively spliced A3F gene products, particularly A3FΔ2, were incorporated into HIV virions, albeit at levels less than wild-type A3F. Thus, alternative splicing of A3F mRNA generates truncated antiviral proteins that differ sharply in their sensitivity to Vif.  相似文献   

11.
12.
13.
Multiple RNA splicing sites exist within human immunodeficiency virus type 1 (HIV-1) genomic RNA, and these sites enable the synthesis of many mRNAs for each of several viral proteins. We evaluated the biological significance of the alternatively spliced mRNA species during productive HIV-1 infections of peripheral blood lymphocytes and human T-cell lines to determine the potential role of alternative RNA splicing in the regulation of HIV-1 replication and infection. First, we used a semiquantitative polymerase chain reaction of cDNAs that were radiolabeled for gel analysis to determine the relative abundance of the diverse array of alternatively spliced HIV-1 mRNAs. The predominant rev, tat, vpr, and env RNAs contained a minimum of noncoding sequence, but the predominant nef mRNAs were incompletely spliced and invariably included noncoding exons. Second, the effect of altered RNA processing was measured following mutagenesis of the major 5' splice donor and several cryptic, constitutive, and competing 3' splice acceptor motifs of HIV-1NL4-3. Mutations that ablated constitutive splice sites led to the activation of new cryptic sites; some of these preserved biological function. Mutations that ablated competing splice acceptor sites caused marked alterations in the pool of virus-derived mRNAs and, in some instances, in virus infectivity and/or the profile of virus proteins. The redundant RNA splicing signals in the HIV-1 genome and alternatively spliced mRNAs provides a mechanism for regulating the relative proportions of HIV-1 proteins and, in some cases, viral infectivity.  相似文献   

14.
15.
16.
Alternative 5'' splice site selection induced by heat shock.   总被引:4,自引:0,他引:4       下载免费PDF全文
The mouse HSP47 gene consists of six exons separated by five introns. Three HSP47 cDNAs differing only in their 5' noncoding regions have been reported. One of these alternatively spliced mRNAs was detected only after heat shock, which caused an alternative 5' splice donor site selection. Other stress inducers, including an amino acid analog and sodium arsenite, had no effect on the alternative splicing. The alternatively spliced mRNA, which was 169 nucleotides longer in the 5' noncoding region compared to mRNA transcribed in non-heat shock conditions, was efficiently translated under heat shock conditions. This novel finding that alternative splicing is caused by artificial treatment like heat shock will provide a useful in vivo model for understanding the exon-intron recognition mechanism as well as heat shock-induced alterations in gene expression.  相似文献   

17.
18.
19.
20.
Expression of alternatively spliced mRNA variants at specific stages of development or in specific cells and tissues contributes to the functional diversity of the human genome. Aberrations in alternative splicing were found as a cause or a contributing factor to the development, progression, or maintenance of various diseases including cancer. The use of antisense oligonucleotides to modify aberrant expression patterns of alternatively spliced mRNAs is a novel means of potentially controlling such diseases. However, to utilize antisense oligonucleotides as molecular chemotherapeutic agents, the global effects of these molecules need to be examined. The advent of gene expression array technology has now made it possible to simultaneously examine changes that occur in the expression levels of several thousand genes in response to antisense treatment. This analysis should help in the development of more specific and efficacious antisense oligonucleotides as molecular therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号