首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grapevine is one of the most economically important crops in the world. Although long terminal repeat (LTR) retrotransposons are thought to have played an important role in plants, its distribution in grapevine is not clear. Here, we identified genome-wide intact LTR retrotransposons in a total of six high-quality grapevine genomes from Vitis vinifera L., Vitis sylvestris C.C. Gmel., Vitis riparia Michx. and Vitis amurensis Rupr. with an average of 2938 per genome. Among them, the Copia superfamily (particularly for Ale) is a major component of the LTR retrotransposon in grapevine. Insertion time and copy number analysis revealed that the expansion of 70% LTR retrotransposons concentrating on approximately 2.5 Ma was able to drive genome size variation. Phylogenetic tree and syntenic analyses showed that most LTR retrotransposons in these genomes formed and evolved after species divergence. Furthermore, the function and expression of genes inserted by LTR retrotransposons in V. vinifera (Pinot noir) and V. riparia were explored. The length and expression of genes related to starch metabolism and quinone synthesis pathway in Pinot noir and environmental adaptation pathway in V. riparia were significantly affected by LTR retrotransposon insertion. The results improve the understanding of LTR retrotransposons in grapevine genomes and provide insights for its potential contribution to grapevine trait evolution.  相似文献   

2.
We previously characterized a female-specific randomly amplified polymorphic DNA (RAPD), designated W-Kabuki, derived from the W chromosome of the silkworm, Bombyx mori. To further analyze the W chromosome of B. mori, we obtained a lambda phage clone which contains the W-Kabuki RAPD sequence and sequenced the 18.1-kb DNA insert. We found that this DNA comprises a nested structure of at least seven elements; three retrotransposons, two retroposons, one functionally unknown insertion, and one Bombyx repetitive sequence. The non-LTR retrotransposon BMC1, the retroposon Bm1, a functionally unknown inserted DNA (FUI), and a copia-like LTR retrotransposon (Yokozuna) are themselves inserted into a novel gypsy-Ty3-like LTR retrotransposon, named Kabuki. Furthermore, this Kabuki element is itself inserted into another copy of Bm1. The BMC1 and Yokozuna elements inserted in the Kabuki sequence are intact. Moreover, the Kabuki element is largely intact. These results suggest that many retrotransposable elements have accumulated on the W chromosome, and these elements are expected to evolve more slowly than those on other chromosomes. Received: 7 October 1999 / Accepted: 14 April 2000  相似文献   

3.
野生杜鹃杂交亲和性及适宜的评价指标   总被引:1,自引:0,他引:1  
以映山红和马银花为母本,映山红亚属、羊踯躅亚属、杜鹃亚属、常绿杜鹃亚属以及马银花亚属的5个亚属16个中国野生杜鹃种为父本进行杂交授粉,统计子房膨大率、坐果率和种子萌发率,分析杜鹃属植物远缘杂交的亲和性,探讨其杂交亲和性适宜的评价指标。结果表明:映山红作为母本,与同亚属的杜鹃杂交亲和性较好,与其它亚属的杜鹃种的杂交亲和性存在显著的亚属间和种间差异;而马银花作为母本,与同亚属的西施花进行杂交,未获得杂交果实和种子,但与杜鹃其它亚属种的杂交,部分杂交组合显示出较好的杂交亲和性。这一结果表明,映山红作为母本,与马银花相比,有着较好的杂交亲和性,并且杜鹃属植物的杂交亲和性与目前杜鹃分类体系中的亲缘关系并没有直接关系。进一步的数据分析表明,子房膨大率与坐果率、坐果率与蒴果平均种子数之间呈显著正相关,但子房膨大率与果实内种子数无直接相关性;花粉活力(大于15%)、父母本花柱长度比(在0.50~2.12范围内)与子房膨大率等亲和性指标无显著相关性。  相似文献   

4.
Long terminal repeat (LTR) retrotransposons are closely related to retroviruses, and their activities shape eukaryotic genomes. Here, we present a complete Lotus japonicus insertion mutant collection generated by identification of 640 653 new insertion events following de novo activation of the LTR element Lotus retrotransposon 1 (LORE1) ( http://lotus.au.dk ). Insertion preferences are critical for effective gene targeting, and we exploit our large dataset to analyse LTR element characteristics in this context. We infer the mechanism that generates the consensus palindromes typical of retroviral and LTR retrotransposon insertion sites, identify a short relaxed insertion site motif, and demonstrate selective integration into CHG‐hypomethylated genes. These characteristics result in a steep increase in deleterious mutation rate following activation, and allow LORE1 active gene targeting to approach saturation within a population of 134 682 L. japonicus lines. We suggest that saturation mutagenesis using endogenous LTR retrotransposons with germinal activity can be used as a general and cost‐efficient strategy for generation of non‐transgenic mutant collections for unrestricted use in plant research.  相似文献   

5.
Long terminal repeat (LTR) retrotransposons are the major DNA components of flowering plants. They are generally enriched in pericentromeric heterochromatin regions of their host genomes, which could result from the preferential insertion of LTR retrotransposons and the low effectiveness of purifying selection in these regions. To estimate the relative importance of the actions of these two factors on their distribution pattern, the LTR retrotransposons in Solanum lycopersicum (tomato) plants were characterized at the genome level, and then the distribution of young elements was compared with that of relatively old elements. The current data show that old elements are mainly located in recombination‐suppressed heterochromatin regions, and that young elements are preferentially located in the gene‐rich euchromatic regions. Further analysis showed a negative correlation between the insertion time of LTR retrotransposons and the recombination rate. The data also showed there to be more solo LTRs in genic regions than in intergenic regions or in regions close to genes. These observations indicate that, unlike in many other plant genomes, the current LTR retrotransposons in tomatoes have a tendency to be preferentially located into euchromatic regions, probably caused by their severe suppression of activities in heterochromatic regions. These elements are apt to be maintained in heterochromatin regions, probably as a consequence of the pericentromeric effect in tomatoes. These results also indicate that local recombination rates and intensities of purifying selection in different genomic regions are largely responsible for structural variation and non‐random distribution of LTR retrotransposons in tomato plants.  相似文献   

6.
Ng  Sai-Chit  Corlett  Richard T. 《Plant Ecology》2003,164(2):225-233
Six native Rhododendron species grow in thedegraded, fire-prone landscape of Hong Kong: R. simsii andR. farrerae are common and widespread, R.moulmainense is relatively restricted, and R.championiae, R. hongkongense, and R.simiarum are rare. For all species except the rare R.simiarum, there was direct or indirect evidence of regrowth afterfire, but only the two smallest and commonest species grow in sites which arefrequently burned. Both flowered within 18 months of a fire. Most populationsofall species, except R. simiarum, had a deficiency ofindividuals in the smaller basal circumference classes. Seedlings were foundonly in three out of four plots of R. simiarum, and one ofR. farrerae. A few seedlings of the other rare specieswereseen in open, litter-free microsites outside the study plots, but no seedlingsof the most common species, R. simsii, were seen anywhere.In logistic regression models, one or more measures of plant size weresignificant positive predictors of flowering at least once in the three yearstudy period for all species, while percentage cover by surrounding vegetationhad a significant negative impact on all except R. simsiiand R. farrerae, for which no populations arestrongly-shaded. Although the absence of current recruitment is not necessarilya cause for concern in long-lived species that can resprout after fire, werecommend that active vegetation management should be tried to enhance thesurvival and reproduction of R. moulmainense, R.championiae and R. hongkongense, and that newpopulations of these species and R. simiarum should becreated.  相似文献   

7.
Improved knowledge of genome composition, especially of its repetitive component, generates important informations in both theoretical and applied research. In this study, we provide the first insight into the local organization of the sunflower genome by sequencing and annotating 349,380 bp from 3 BAC clones, each including one single-copy gene. These analyses resulted in the identification of 11 putative gene sequences, 18 full-length LTR retrotransposons, 6 incomplete LTR retrotransposons, 2 non-autonomous LTR-retroelements (LINEs), 2 putative DNA transposons fragments and one putative helitron. Among LTR-retrotransposons, non-autonomous elements (the so-called LARDs), which do not carry any protein-encoding sequence, were discovered for the first time in the sunflower. The insertion time of intact retroelements was measured, based on sister LTRs divergence. All isolated elements were inserted relatively recently, especially those belonging to the Gypsy superfamily. Retrotransposon families related to those identified in the BAC clones are present also in other species of Helianthus, both annual and perennial, and even in other Asteraceae. In one of the three BAC clones, we found five copies of a lipid transfer protein (LTP) encoding gene within less than 100,000 bp, four of which are potentially functional. Two of these are interrupted by LTR retrotransposons, in the intron and in the coding sequence, respectively. The divergence between sister LTRs of the retrotransposons inserted within the genes indicates that LTP gene duplication started earlier than 1.749 MYRS ago. On the whole, the results reported in this study confirm that the sunflower is an excellent system to study transposons dynamics and evolution.  相似文献   

8.
Retrotransposons are an ubiquitous component of plant genomes, especially abundant in species with large genomes. Populus trichocarpa has a relatively small genome, which was entirely sequenced; however, studies focused on poplar retrotransposons dynamics are rare. With the aim to study the retrotransposon component of the poplar genome, we have scanned the complete genome sequence searching full-length long-terminal repeat (LTR) retrotransposons, i.e., characterised by two long terminal repeats at the 5′ and 3′ ends. A computational approach based on detection of conserved structural features, on building multiple alignments, and on similarity searches was used to identify 1,479 putative full-length LTR retrotransposons. Ty1-copia elements were more numerous than Ty3-gypsy. However, many LTR retroelements were not assigned to any superfamily because lacking of diagnostic features and non-autonomous. LTR retrotransposon remnants were by far more numerous than full-length elements, indicating that during the evolution of poplar, large amplification of these elements was followed by DNA loss. Within superfamilies, Ty3-gypsy families are made of more members than Ty1-copia ones. Retrotransposition occurred with increasing frequency following the separation of Populus sections, with different waves of retrotransposition activity between Ty3-gypsy and Ty1-copia elements. Recently inserted elements appear more frequently expressed than older ones. Finally, different levels of activity of retrotransposons were observed according to their position and their density in the linkage groups. On the whole, the results support the view of retrotransposons as a community of different organisms in the genome, whose activity (both retrotransposition and DNA loss) has heavily impacted and probably continues to impact poplar genome structure and size.  相似文献   

9.
The diversity of mobile elements, in particular LTR retrotransposons, in basidiomycetes fungi has been poorly studied. The genome of the lignin-degrading fungus Phanerochaete chrysosporium was screened for LTR retrotransposons. A surprisingly high diversity of LTR retrotransposons was found. Twenty-three novel mobile elements from two superfamilies, Pseudoviridae and Metaviridae, were described. The proportion of LTR retrotransposons in the P. chrysosporium genome is low, constituting only about 3%. Nevertheless, LTR retrotransposons of P. chrysosporium represent a dynamic part of the genome, which is evidenced by the presence of intact copies with signs of recent transposition and numerous solo LTR elements. Phylogenetic and structural analyses detected mobile elements having characteristics that had been previously unknown for other LTR retrotransposons.  相似文献   

10.
头花杜鹃(Rhododendron capitatum)和陇蜀杜鹃(R. przewalskii)是极具观赏价值的野生花卉和药用植物。为探讨头花杜鹃和陇蜀杜鹃叶绿体基因组的遗传结构及进化特征,该研究利用 Illumina HiSeq 4000 平台对头花杜鹃和陇蜀杜鹃的叶绿体全基因组进行测序,经组装和注释后,结合 7 个已发表的杜鹃属植物叶绿体全基因组进行比较基因组学分析和系统发育分析。结果表明:(1)头花杜鹃和陇蜀杜鹃叶绿体全基因组呈典型的环状四分体结构,均由一个大单拷贝区(105 990、109 191 bp)、一个小单拷贝区(2 617、2 606 bp)和一对反向重复区(45 825、47 516 bp)构成,全长分别为200 257、206 829 bp。(2)头花杜鹃和陇蜀杜鹃叶绿体基因组中共鉴定出 263 个SSR位点,大部分 SSR 偏好使用 A/T 碱基,密码子偏好使用 A/U 结尾。(3)杜鹃属植物叶绿体全基因组中普遍存在基因丢失以及基因组重排等结构变异现象。该研究丰富了杜鹃属植物的基因组资源,为头花杜鹃、陇蜀杜鹃的资源开发、遗传进化、育种及系统发育相关研究提供了理论参考。  相似文献   

11.
Structure and evolution of full-length LTR retrotransposons in rice genome   总被引:1,自引:0,他引:1  
The long terminal repeat (LTR) retrotransposons are the most abundant class of transposable elements in plant genomes and play important roles in genome divergence and evolution. Their accumulation is the main factor influencing genome size increase in plants. Rice (Oryza sativa L.) is a model monocot and is the focus of much biological research due to its economic importance. We conducted a comprehensive survey of full-length LTR retrotransposons based on the completed genome of japonica rice variety Nipponbare (TIGR Release 5), with the newly published tool LTR-FINDER. The elements could be categorized into 29 structural domain categories (SDCs), and their total copy number identified was estimated at >6,000. Most of them were relatively young: more than 90% were less than 10 My. There existed a high level of activity among them as a whole at 0–1 Mya, but different categories possessed distinct amplification patterns. Most recently inserted elements were specific to the rice genome, while a few were conserved across species. This study provides new insights into the structure and evolutionary history of the full-length retroelements in the rice genome.  相似文献   

12.
From two cDNA libraries made of flowers of the evergreen Rhododendron simsii hybrid ‘Flamenco’ and the deciduous species Rhododendron luteum, 323 cDNA fragments were randomly sequenced and functions were assigned. Reliable homologies were found for 31% of the fragments. For mapping applications, EST-derived markers were developed on 127 sequences. Since polymorphisms are more prone to come about in introns, primers were selected to have an elevated probability to be intron-spanning. The utilised approach resulted in an overall polymorphism-generating efficiency of 35% (45 polymorphic markers). The transferability of these cDNA-based EST markers among plant species was confirmed within the Rhododendron genus. The markers developed here are currently screened for the construction of genetic linkage maps of four crossing populations of R. simsii hybrids.  相似文献   

13.
Rhododendrons are woody plants, famous throughout the world as having high horticultural value. However, many wild species are currently threatened with extinction. Here, we report for the first time a high-quality, chromosome-level genome of Rhododendron griersonianum, which has contributed to approximately 10% of all horticultural rhododendron varieties but which in its wild form has been evaluated as critically endangered. The final genome assembly, which has a contig N50 size of approximately 34 M and a total length of 677 M, is the highest-quality genome sequenced within the genus to date, in part due to its low heterozygosity (0.18%). Identified repeats constitute approximately 57% of the genome, and 38 280 protein-coding genes were predicted with high support. We further resequenced 31 individuals of R. griersonianum as well as 30 individuals of its widespread relative R. delavayi, and performed additional conservation genomic analysis. The results showed that R. griersonianum had lower genetic diversity (θ = 2.58e−3; π = 1.94e−3) when compared not only to R. delavayi (θ = 11.61e−3, π = 12.97e−3), but also to most other woody plants. Furthermore, three severe genetic bottlenecks were detected using both the Stairway plot and fastsimcoal2 analysis, which are thought to have occurred in the late Middle Pleistocene and the Last Glacial Maximum (LGM) period. After these bottlenecks, R. griersonianum recovered and maintained a constant effective population size (>25 000) until now. Intriguingly, R. griersonianum has accumulated significantly more deleterious mutations in the homozygous state than R. delavayi, and several deleterious mutations (e.g., in genes involved in the response to heat stress) are likely to have harmed the adaptation of this plant to its surroundings. This high-quality, chromosome-level genome and the population genomic analysis of the critically endangered R. griersonianum will provide an invaluable resource as well as insights for future study in this species to facilitate conservation and in the genus Rhododendron in general.  相似文献   

14.
Retrotransposons are the largest group of transposable elements (TEs) that are ubiquitous and well dispersed in plant genomes. Transposition/insertion of TEs on chromosomes often generates unique repeat junctions (RJs) between TEs and their flanking sequences. Long terminal repeats (LTR) are well conserved and abundant in plant genomes, making LTR retrotransposons valuable for development of TE junction-based markers. In this study, LTR retrotransposons and their RJs were detected from chokecherry genome sequences generated by Roche 454 sequencing. A total of 1246 LTR retrotransposons were identified, and 338 polymerase chain reaction primer pairs were designed. Of those, 336 were used to amplify DNA from chokecherry and other rosaceous species. An average of 283 of 336 (84.2 %) LTR primer pairs effectively amplified DNA from chokecherries. One hundred and seventeen chokecherry LTR primers also produced amplification in other Prunus (99) or rosaceous species (19). A total of 59 of 78 polymorphic LTR markers were qualified for linkage map construction according to the segregation distortion Chi-square (χ 2) test. Forty-eight LTR markers were successfully located on a previously constructed chokecherry map. The majority of the LTR markers were mapped on LG XI of the chokecherry map. Our results suggest that LTR marker development using random genome sequences is rapid and cost-efficient. Confirmed applicability of LTR markers in map construction and genetic mapping will facilitate genetic research in chokecherry and other rosaceous species.  相似文献   

15.
LTR retrotransposons are the most abundant transposable elements in Drosophila and are believed to have contributed significantly to genome evolution. Different reports have shown that many LTR retrotransposon families in Drosophila melanogaster emerged from recent evolutionary episodes of transpositional activity. To contribute to the knowledge of the evolutionary history of Drosophila LTR retrotransposons and the mechanisms that control their abundance, distribution and diversity, we conducted analyses of four related families of LTR retrotransposons, 297, 17.6, rover and Tom. Our results show that these elements seem to be restricted to species from the D. melanogaster group, except for 17.6, which is also present in D. virilis and D. mojavensis. Genetic divergences and phylogenetic analyses of a 1-kb fragment region of the pol gene illustrate that the evolutionary dynamics of Tom, 297, 17.6 and rover retrotransposons are similar in several aspects, such as low codon bias, the action of purifying selection and phylogenies that are incongruent with those of the host species. We found an extremely complex association among the retrotransposon sequences, indicating that different processes shaped the evolutionary history of these elements, and we detected a very high number of possible horizontal transfer events, corroborating the importance of lateral transmission in the evolution and maintenance of LTR retrotransposons.  相似文献   

16.
17.
Gao D  Chen J  Chen M  Meyers BC  Jackson S 《PloS one》2012,7(2):e32010
LTR retrotransposons are often the most abundant components of plant genomes and can impact gene and genome evolution. Most reported LTR retrotransposons are large elements (>4 kb) and are most often found in heterochromatic (gene poor) regions. We report the smallest LTR retrotransposon found to date, only 292 bp. The element is found in rice, maize, sorghum and other grass genomes, which indicates that it was present in the ancestor of grass species, at least 50-80 MYA. Estimated insertion times, comparisons between sequenced rice lines, and mRNA data indicate that this element may still be active in some genomes. Unlike other LTR retrotransposons, the small LTR retrotransposons (SMARTs) are distributed throughout the genomes and are often located within or near genes with insertion patterns similar to MITEs (miniature inverted repeat transposable elements). Our data suggests that insertions of SMARTs into or near genes can, in a few instances, alter both gene structures and gene expression. Further evidence for a role in regulating gene expression, SMART-specific small RNAs (sRNAs) were identified that may be involved in gene regulation. Thus, SMARTs may have played an important role in genome evolution and genic innovation and may provide a valuable tool for gene tagging systems in grass.  相似文献   

18.

Background and Aims

Although monocotyledonous plants comprise one of the two major groups of angiosperms and include >65 000 species, comprehensive genome analysis has been focused mainly on the Poaceae (grass) family. Due to this bias, most of the conclusions that have been drawn for monocot genome evolution are based on grasses. It is not known whether these conclusions apply to many other monocots.

Methods

To extend our understanding of genome evolution in the monocots, Asparagales genomic sequence data were acquired and the structural properties of asparagus and onion genomes were analysed. Specifically, several available onion and asparagus bacterial artificial chromosomes (BACs) with contig sizes >35 kb were annotated and analysed, with a particular focus on the characterization of long terminal repeat (LTR) retrotransposons.

Key Results

The results reveal that LTR retrotransposons are the major components of the onion and garden asparagus genomes. These elements are mostly intact (i.e. with two LTRs), have mainly inserted within the past 6 million years and are piled up into nested structures. Analysis of shotgun genomic sequence data and the observation of two copies for some transposable elements (TEs) in annotated BACs indicates that some families have become particularly abundant, as high as 4–5 % (asparagus) or 3–4 % (onion) of the genome for the most abundant families, as also seen in large grass genomes such as wheat and maize.

Conclusions

Although previous annotations of contiguous genomic sequences have suggested that LTR retrotransposons were highly fragmented in these two Asparagales genomes, the results presented here show that this was largely due to the methodology used. In contrast, this current work indicates an ensemble of genomic features similar to those observed in the Poaceae.  相似文献   

19.
Long terminal repeat retrotransposons of Oryza sativa   总被引:1,自引:0,他引:1  
McCarthy EM  Liu J  Lizhi G  McDonald JF 《Genome biology》2002,3(10):research0053.1-research005311

Background  

Long terminal repeat (LTR) retrotransposons constitute a major fraction of the genomes of higher plants. For example, retrotransposons comprise more than 50% of the maize genome and more than 90% of the wheat genome. LTR retrotransposons are believed to have contributed significantly to the evolution of genome structure and function. The genome sequencing of selected experimental and agriculturally important species is providing an unprecedented opportunity to view the patterns of variation existing among the entire complement of retrotransposons in complete genomes.  相似文献   

20.
长末端重复序列(Long terminal repeat,LTR)反转录转座子是真核生物基因组中普遍存在的一类可移动的DNA序列,它们以RNA为媒介,通过"复制粘贴"机制在基因组中不断自我复制。在高等植物中,许多活性的LTR反转录转座子已被详尽研究并应用于分子标记技术、基因标签、插入型突变及基因功能等分析。本文对植物活性LTR反转录转座子进行全面的调查,并对其结构、拷贝数和分布以及转座特性进行系统的归纳,分析了植物活性LTR反转录转座子的gag(种属特异抗原)和pol(聚合酶)序列特征,以及LTR序列中顺式调控元件的分布。研究发现自主有活性的LTR反转录转座子必须具备LTR区域以及编码Gag、Pr、Int、Rt和Rh蛋白的基因区。其中两端LTR区域具有高度同源性且富含顺式调控元件;Rt蛋白必备RVT结构域;Rh蛋白必备RNase_H1_RT结构域。这些结果为后续植物活性LTR反转录转座子的鉴定和功能分析奠定了重要基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号