首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which is a non-alignment based method for sequence analysis to map conserved sequences in glycoside hydrolase families. The conserved sequences were used to identify similar genes in the M. circinelloides genome. We found 12 different novel genes encoding members of the GH3, GH5, GH9, GH16, GH38, GH47 and GH125 families in M. circinelloides. One of the two GH3-encoding genes was predicted to encode a β-glucosidase (EC 3.2.1.21). We expressed this gene in Pichia pastoris KM71H and found that the purified recombinant protein had relative high β-glucosidase activity (1.73 U/mg) at pH5 and 50 °C. The Km and Vmax with p-nitrophenyl-β-d-glucopyranoside as substrate was 0.20 mM and 2.41 U/mg, respectively. The enzyme was not inhibited by glucose and retained 84% activity at glucose concentrations up to 140 mM. Although zygomycetes are not considered to be important degraders of lignocellulosic biomass in nature, the present finding of an active β-glucosidase in M. circinelloides demonstrates that enzymes from this group of fungi have a potential for cellulose degradation.  相似文献   

2.
3.
Two types of β-1,3-glucanases, AkLam36 and AkLam33 with the molecular masses of 36 kDa and 33 kDa, respectively, were isolated from the digestive fluid of the common sea hare Aplysia kurodai. AkLam36 was regarded as an endolytic enzyme (EC 3.2.1.6) degrading laminarin and laminarioligosaccharides to laminaritriose, laminaribiose, and glucose, while AkLam33 was regarded as an exolytic enzyme (EC 3.2.1.58) directly producing glucose from polymer laminarin. AkLam36 showed higher activity toward β-1,3-glucans with a few β-1,6-linked glucose branches such as Laminaria digitata laminarin (LLam) than highly branched β-1,3-glucans such as Eisenia bicyclis laminarin (ELam). AkLam33 showed moderate activity toward both ELam and LLam and high activity toward smaller substrates such as laminaritetraose and laminaritriose. Although both enzymes did not degrade laminaribiose as a sole substrate, they were capable of degrading it via transglycosylation reaction with laminaritriose. The N-terminal amino-acid sequences of AkLam36 and AkLam33 indicated that both enzymes belong to the glycosyl hydrolase family 16 like other molluscan β-1,3-glucanases.  相似文献   

4.
《Mycological Research》2006,110(1):66-74
Three exocellular β-1,3-glucanases from Acremonium blochii strain C59, BGN3.2, BGN3.3 and BGN3.4, were purified. Two, BGN3.2 and BGN3.4 appeared to act as exo-enzymes against laminarin from Laminaria digitata, while BGN3.3 displayed an endo-mode of action. The N-terminal amino acid sequence data for BGN3.2 and BGN3.4 suggested these two enzymes may be encoded by different genes. The gene encoding the BGN3.2 glucanase was fully sequenced, and its deduced amino acid sequence was similar to those for all other sequenced fungal exo-β-1,3-glucanases. This BGN3.2 gene consists of an uninterrupted ORF of 2349 bp encoding 783 amino acids possibly with two cleavage sites for the potential removal of a pre- and pro-protein, respectively. A DNA fragment encoding a portion of the BGN3.4 gene was amplified by PCR, and the nucleotide sequence of this fragment confirmed that BGN3.2 and BGN3.4 are encoded by different genes. The internal peptide sequences of BGN3.3 were not present in the amino acid sequence deduced from the BGN3.2 gene, reinforcing the view that BGN3.3 is also genetically different to BGN3.2. Genetic differences between multiple forms of fungal β-1,3-glucanases from a single fungus have not been reported previously.  相似文献   

5.
Zhou F  Wang Y  Guan Y  Xu Y  Gao X  Wu W  Ye B 《Fish & shellfish immunology》2011,30(4-5):1170-1177
Sharks are a type of fish with a full cartilaginous skeleton and have big livers. To better understand liver regeneration in sharks and screening for the important genes participated in disease-defense, in this study, a cDNA library of regenerated liver tissues of shark, Chiloscyllium plagiosum, was constructed. A total of 2103 expressed sequence tags (ESTs), which represents 997 unique genes, were sequenced. Among these genes, 434 (43.53%) of them showed significant similarity (E-values < 10?5) to the sequences in NCBI Nt database, 685 (68.71%) of these unique genes showed significant similarity (E-values < 10?5) to the sequences in NCBI Nr database, and 662 (66.40%) of these unique genes showed significant similarity (E-values < 10?5) to the Swiss-Prot database. Preliminary analysis of unique genes according to COG database showed that unigenes were further grouped into 21 functional categories including inorganic ion transport and metabolism, energy production and conversion, posttranslational modification, protein turnover and chaperones, general function prediction only, translation, and ribosomal structure and biogenesis. Several possible candidate genes involved in liver regeneration were selected to analyze their expression with relative quantification real-time PCR. This study may contribute to our better understanding of the molecular mechanism of regeneration in shark liver. Furthermore, the EST cataloguing and profiling of shark will be also benefited to the functional genomic research in this marine species.  相似文献   

6.
Succinate is an important commodity chemical currently used in the food, pharmaceutical, and polymer industries. It can also be chemically converted into other major industrial chemicals such as 1,4-butanediol, butadiene, and tetrahydrofuran. Here we metabolically engineered a model cyanobacterium Synechococcus elongatus PCC 7942 to photosynthetically produce succinate. We expressed the genes encoding for α-ketoglutarate decarboxylase and succinate semialdehyde dehydrogenase in S. elongatus PCC 7942, resulting in a strain capable of producing 120 mg/L of succinate. However, this recombinant strain exhibited severe growth retardation upon induction of the genes encoding for the succinate producing pathway, potentially due to the depletion of α-ketoglutarate. To replenish α-ketoglutarate, we expressed the genes encoding for phosphoenolpyruvate carboxylase and citrate synthase from Corynebacterium glutamicum into the succinate producing strain. The resulting strain successfully restored the growth phenotype and produced succinate with a titer of 430 mg/L in 8 days. These results demonstrated the possibility of photoautotrophic succinate production.  相似文献   

7.
AimsMembrane bound adenosine triphosphatases (ATPases) and lysosomal enzymes play an important role in the pathology of myocardial infarction. This study was aimed to evaluate the combined preventive effects of quercetin and α-tocopherol on membrane bound ATPases and lysosomal enzymes in isoproterenol induced myocardial infarcted rats.Main methodsMale Wistar rats were pretreated with a combination of quercetin (10 mg/kg) and α-tocopherol (10 mg/kg) daily for 14 days. After the pretreatment period, isoproterenol (100 mg/kg) was injected to rats at an interval of 24 h for two days to induce myocardial infarction. The activities of ATPases and lysosomal enzymes were assayed.Key findingsIsoproterenol treated rats showed decreased levels of heart creatine kinase and lactate dehydrogenase. The activity of sodium potassium adenosine triphosphatase was decreased and the activities of magnesium adenosine triphosphatase and calcium adenosine triphosphatase were increased in isoproterenol treated rats. Also, the activities of β-glucuronidase, β-N-acetylglucosaminidase, β-galactosidase, cathepsin-B and D were increased (serum and heart), but the activities of β-glucuronidase and cathepsin-D were decreased in lysosomal fraction and increased in cytosolic fraction of the heart in isoproterenol treated rats. Furthermore, the heart lipid peroxidation products were increased in isoproterenol treated rats. Combined pretreatment with quercetin and α-tocopherol to isoproterenol treated rats normalized all the biochemical parameters studied. The observed effects are due to their membrane stabilizing property and this property might be due to decreased lipid peroxidation.SignificanceOur study demonstrated that combined pretreatment was better than single pretreatment. This study may have significant impact on myocardial infarcted patients.  相似文献   

8.
9.
Antarctica is subjected to extremely variable conditions, but the importance of the temperature increase in cold adapted bacteria is still unknown. To study the molecular adaptation to warming of Antarctic bacteria, cultures of Shewanella frigidimarina were incubated at temperatures ranging from 0 °C to 30 °C, emulating the most extreme conditions that this strain could tolerate. A proteomic approach was developed to identify the soluble proteins obtained from cells growing at 4 °C, 20 °C and 28 °C. The most drastic effect when bacteria were grown at 28 °C was the accumulation of heat shock proteins as well as other proteins related to stress, redox homeostasis or protein synthesis and degradation, and the decrease of enzymes and components of the cell envelope. Furthermore, two main responses in the adaptation to warm temperature were detected: the presence of diverse isoforms in some differentially expressed proteins, and the composition of chaperone interaction networks at the limits of growth temperature. The abundance changes of proteins suggest that warming induces a stress situation in S. frigidimarina forcing cells to reorganize their molecular networks as an adaptive response to these environmental conditions.  相似文献   

10.
《Process Biochemistry》2014,49(10):1630-1636
The present work describes the secretome profiling of a phytopathogenic fungus, Phoma exigua by liquid chromatography coupled tandem mass spectrometry (LC–MS/MS) based proteomics approach to highlight the suites of enzymes responsible for biomass hydrolysis. Mass spectrometry identified 33 proteins in the Phoma secretome when grown on α-cellulose as the sole carbon source. The functional classification revealed a unique extracellular enzyme system mainly belonging to the family of glycosyl hydrolase proteins (52%). This hydrolytic system consisted of cellulases (endo-1,4-β-glucanase, cellobiohydrolase I, exoglucanase, and β-glucosidase), hemicellulases (1,4-β-xylosidase and endo-1,4-β-xylanase) and other hypothetical proteins including GH3, GH5, GH6, GH7, GH11, GH20, GH32 and GH54. The synergistic action of this enzyme cocktail was assessed by the saccharification of alkali treated wheat straw. Since the Phoma secretome has limited β-glucosidase activity, it was supplemented with commercial β-glucosidase. After supplementation, this enzyme complex resulted in high yields of glucose (177.2 ± 1.0 mg/gds), xylose (209.2 ± 1.5 mg/gds) and arabinose (25.2 ± 0.3 mg/gds). The secretome analysis and biomass hydrolysis by P. exigua revealed its unique potential as a source of hydrolytic enzymes for lignocellulosic biomass hydrolysis.  相似文献   

11.
We previously reported a metabolic engineering strategy to develop an isopropanol producing strain of Cupriavidus necator leading to production of 3.4 g L−1 isopropanol. In order to reach higher titers, isopropanol toxicity to the cells has to be considered. A toxic effect of isopropanol on the growth of C. necator has been indeed observed above a critical value of 15 g L−1. GroESL chaperones were first searched and identified in the genome of C. necator. Native groEL and groES genes from C. necator were over-expressed in a strain deleted for PHA synthesis. We demonstrated that over-expressing groESL genes led to a better tolerance of the strain towards exogenous isopropanol. GroESL genes were then over-expressed within the best engineered isopropanol producing strain. A final isopropanol concentration of 9.8 g L−1 was achieved in fed-batch culture on fructose as the sole carbon source (equivalent to 16 g L−1 after taking into account evaporation). Cell viability was slightly improved by the chaperone over-expression, particularly at the end of the fermentation when the isopropanol concentration was the highest. Moreover, the strain over-expressing the chaperones showed higher enzyme activity levels of the 2 heterologous enzymes (acetoacetate carboxylase and alcohol dehydrogenase) of the isopropanol synthetic operon, translating to a higher specific production rate of isopropanol at the expense of the specific production rate of acetone. Over-expressing the native chaperones led to a 9–18% increase in the isopropanol yield on fructose.  相似文献   

12.
Thermal stability of starch degrading enzymes varies from one source to another. This research was aimed to study thermal stability of starch degrading enzymes of teff malt. Isothermal mashing at temperatures ranging between 40 and 75 °C with sampling in 15 min interval for a total of 90 min was conducted. The study showed that deactivation rate constants of alpha- and beta-amylases ranged from 0.0003 to 0.0409 min?1, and 0.002 to 0.032 min?1, respectively. Rate of deactivation of limit dextrinase was not significant at temperatures lower than 60 °C but showed high deactivation at higher temperatures with rate constants ranging from 0.02 to 0.1 min?1. The thermal deactivation energies of alpha-amylase, beta-amylase, and limit dextrinase were found to be 148, 82, and 144 kJ/mol, respectively. The present findings have significant applications in commercial processes where determination of the upper temperature limits for these enzymes is required.  相似文献   

13.
We have previously isolated a lactic acid bacterium (LAB), Pediococcus pentosaceus LP28, from the longan fruit Euphoria longana. Since the plant-derived LAB strain produces an extracellular polysaccharide (EPS), in this study, we analyzed the chemical structure and the biosynthesizing genes for the EPS.The EPS, which was purified from the LP28 culture broth, was classified into acidic and neutral EPSs with a molecular mass of about 50 kDa and 40 kDa, respectively. The acidic EPS consisted of glucose, galactose, mannose, and N-acetylglucosamine moieties. Interestingly, since pyruvate residue was detected in the hydrolyzed acidic EPS, one of the four sugars may be modified with pyruvate. On the other hand, the neutral EPS consisted of glucose, mannose, and N-acetylglucosamine; pyruvate was scarcely detected in the polysaccharide molecule.As a first step to deduce the probiotic function of the EPS together with the biosynthesis, we determined the whole genome sequence of the LP28 strain, demonstrating that the genome is a circular DNA, which is composed of 1,774,865 bp (1683 ORFs) with a GC content of 37.1%. We also found that the LP28 strain harbors a plasmid carrying 6 ORFs composed of 5366 bp with a GC content of 36.5%. By comparing all of the genome sequences among the LP28 strain and four strains of P. pentosaceus reported previously, we found that 53 proteins in the LP28 strain display a similarity of less than 50% with those in the four P. pentosaceus strains. Significantly, 4 of the 53 proteins, which may be enzymes necessary for the EPS production on the LP28 strain, were absent in the other four P. pentosaceus strains and displayed less than 50% similarity with other LAB species. The EPS-biosynthetic gene cluster detected only in the LP28 genome consisted of 12 ORFs containing a priming enzyme, five glycosyltransferases, and a putative polysaccharide pyruvyltransferase.  相似文献   

14.
Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP+-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.  相似文献   

15.
Eight mesorhizobial symbiotic strains isolated from Anthyllis vulneraria root-nodules were studied and compared taxonomically with defined Mesorhizobium species. All strains presented identical 16S rDNA sequences but can be differentiated by multilocus sequence analysis of housekeeping genes (recA, atpD, glnII and dnaK). Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses separate these strains in two groups and a separate strain. Levels of DNA–DNA relatedness were less than 55% between representative strains and their closest Mesorhizobium reference relatives. The two groups containing four and three strains, respectively, originating from border mine and non-mining areas in Cévennes, were further phenotypically characterized. Groupings were further supported by average nucleotide identity values based on genome sequencing, which ranged from 80 to 92% with their close relatives and with each other, confirming these groups represent new Mesorhizobium species. Therefore, two novel species Mesorhizobium delmotii sp. nov. (type strain STM4623T = LMG 29640T = CFBP 8436T) and Mesorhizobium prunaredense sp. nov. (type strain STM4891T = LMG 29641T = CFBP 8437T) are proposed. Type strains of the two proposed species share accessory common nodulation genes within the new symbiovar anthyllidis as found in the Mesorhizobium metallidurans type strain.  相似文献   

16.
Hydrocarbon pollution is a major environmental threat to ecosystems in marine and freshwater environments, but its toxicological effect on aquatic organisms remains little studied. A proteomic approach was used to analyze the effect of a freshwater oil spill on the prawn Macrobrachium borellii. To this aim, proteins were extracted from midgut gland (hepatopancreas) of male and female prawns exposed 7 days to a sublethal concentration (0.6 ppm) of water-soluble fraction of crude oil (WSF). Exposure to WSF induced responses at the protein expression level. Two-dimensional gel electrophoresis (2-DE) revealed 10 protein spots that were differentially expressed by WSF exposure. Seven proteins were identified using MS/MS and de novo sequencing. Nm23 oncoprotein, arginine methyltransferase, fatty aldehyde dehydrogenase and glutathione S-transferase were down-regulated, whereas two glyceraldehyde-3-phosphate dehydrogenase isoforms and a lipocalin-like crustacyanin (CTC) were up-regulated after WSF exposure. CTC mRNA levels were further analyzed by quantitative real-time PCR showing an increased expression after WSF exposure. The proteins identified are involved in carbohydrate and amino acid metabolism, detoxification, transport of hydrophobic molecules and cellular homeostasis among others. These results provide evidence for better understanding the toxic mechanisms of hydrocarbons. Moreover, some of these differentially expressed proteins would be employed as potential novel biomarkers.  相似文献   

17.
A bacterial strain, BP3, capable of degrading biphenyl, was isolated from petroleum-contaminated soil. Strain BP3 was identified preliminarily as Achromobacter sp. based on its physiological and biochemical characteristics and 16S rRNA gene sequence analysis. Strain BP3 was able to degrade 50 mg l?1 of biphenyl within 12 h. A 16.7-kb DNA fragment consisting of the entire bph cluster (bphRA1A2XA3A4BCKHJID) was obtained by normal PCR amplification and chromosome walking. Genes encoding integrase and transposon related genes were detected upstream and downstream of the bph cluster, respectively, which indicated that the bph cluster might locate on a big mobile genetic element (MGE).  相似文献   

18.
19.
Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142 g/L with production yield of 0.89 g/g and productivity of 3.55 g L−1 h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.  相似文献   

20.
《Process Biochemistry》2010,45(10):1730-1737
An aerobic xylanolytic Gracilibacillus sp. TSCPVG growing at moderate to extreme salinity (1–30%) and neutral to alkaline pH (6.5–10.5) was isolated from the salt fields near Sambhar district of Rajasthan, India. β-xylanase (18.44 U/ml) and β-xylosidase (1.01 U/ml) were produced in 60 h in the GSL-2 mineral base medium with additions of (in g/l) Birchwood xylan (7.5), yeast extract (10.0), tryptone (8.0), proline (2.0), thiamine (2.0), Tween-40 (2.0) and NaCl (35) at pH 7.5, 30 °C and 180 rpm. The β-xylanase was active within a broad salinity range (0–30% NaCl), pH (5.0–10.5) and temperature (50–70 °C). It exhibited maximal activity with 3.5% NaCl, pH 7.5 at 60 °C. It was extremely halotolerant retaining more than 80% of activity at 0 and 30% NaCl and alkali-tolerant retaining 76% of activity at pH 10.5. The acetone precipitated xylanase was highly stable (100%) at variable salinities of 0–30% NaCl, pH of 5.0–10.5 and temperatures of 0–60 °C for 48 h. HPLC analysis showed xylose, arabinose and xylooligosaccharides as hydrolysis products of xylan. This is the first report on hemi-cellulose degrading halo-alkali-thermotolerant enzyme from a moderately halophilic Gram-positive Gracilibacillus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号