首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeA novel position-sensitive mega-size polycarbonate (MSPC) dosimeter is introduced. It provides photoneutron (PN) dose equivalent matrix of positions in and out of a beam of a high energy X-ray medical accelerator under a single exposure.MethodsA novel position-sensitive MSPC dosimeter was developed and applied. It has an effective etched area of 50 × 50 cm2, as used in this study, processed in a mega-size electrochemical etching chamber to amplify PN-induced-recoil tracks to a point viewed by the unaided eyes. Using such dosimeters, PN dose equivalents, dose equivalent profiles and isodose equivalent distribution of positions in and out of beams for different X-ray doses and field sizes were determined in a Siemens ONCOR Linac.ResultsThe PN dose equivalent at each position versus X-ray dose was linear up to 20 Gy studied. As the field size increased, the PN dose equivalent in the beam was also increased but it remained constant at positions out of the beam up to 20 cm away from the beam edge. The jaws and MLCs due to material differences and locations relative to the target produce different PN contributions.ConclusionsThe MSPC dosimeter introduced in this study is a perfect candidate for PN dosimetry with unique characteristics such as simplicity, efficiency, dose equivalent response, large size, flexibility to be bent, resembling the patient’s skin, highly position-sensitive with high spatial resolution, highly insensitive to X-rays, continuity in measurements and need to a single dosimeter to obtain PN dose equivalent matrix data under a single X-ray exposure.  相似文献   

2.
    
AimThis work is focused on the Monte Carlo microdosimetric calculations taking into account the influence of the AuNPs’ shape, size and mass concentration on the radiation dose enhancement for the high-energy 6 MV and 18 MV X-ray therapeutic beams from a medical linac.BackgroundDue to a high atomic number and the photoelectric effect, gold nanoparticles can significantly enhance doses of ionizing radiation. However, this enhancement depends upon several parameters, such as, inter alia, nanoparticles’ shape etc.MethodThe simulated system was composed of the therapeutic beam, a water phantom with the target volume (with and without AuNPs) located at the depth of the maximum dose, i.e. at 1.5 cm for the 6 MV beam and at 3.5 cm for the 18 MV one. In the study the GEANT4 code was used because it makes it possible to get a very short step of simulation which is required in case of simulating the radiation interactions with nanostructures.ResultsThe dependence between the dose increase and the mass concentration of gold was determined and described by a simple mathematical formula for three different shapes of gold nanoparticles — two nanorods of different sizes and a flat 2D structure. The dose increase with the saturation occurring with the increasing mass concentration of gold was observed.ConclusionsIt was found that relatively large cylindrical gold nanoparticles can limit the increase of the dose absorbed in the target volume much more than the large 2D gold nanostructure.  相似文献   

3.
    
PurposeTo evaluate damage reduction in cardiac implantable electronic devices (CIEDs) caused by photoneutrons in high-energy X-ray radiotherapy using a neutron-shielding sheet (NSS).MethodsThe NSS consists of a bolus with a thickness of 1 or 2 cm (Bls1 or Bls2) as a moderator and several absorbers (20%, 50%, or 80% B4C silicone sheet [B4C20, B4C50, or B4C80] or a 40% LiF silicone sheet [LiF40]). First, a linear accelerator (LINAC) with a water-equivalent phantom was modeled in the simulation and measured experimentally. Several NSSs were placed on the phantom, a Eu:LiCaAlF6 scintillator was placed between the phantom and the NSS, and X-rays were irradiated. The relative counts (Cr = counts when placing the NSS or Bls2) were compared between the experiment and simulation. Second, CIED damage was evaluated in the simulation. The relative damage (Dr = damage when placing or not placing the NSS) was compared among all the NSSs. In addition, the γ-ray and leaking X-ray dose from B4C was measured using a dosimetric film. After determining the optimal NSS combination, Dr value analysis was performed by changing the length of one side and the thickness.ResultsThe Cr values of the simulation and experiment agreed within a 30% percentage difference, except for Bare or LiF40-only. The Dr value was reduced by 43% when Bls2 + B4C80 was applied. The photon dose was less than 5 cGy/1500 MU. The Dr values were smaller for the smaller lengths of one side of B4C80 and decreased as the M-layer thickness increased.ConclusionsThe CIED damage induced by photoneutrons generated by a LINAC was effectively reduced by applying the optimal NSS.  相似文献   

4.
    
The use of synchrotron X-ray sources provides innovative approaches in radiation therapy. The unique possibility to generate quasi-parallel beams promoted the development of microbeam radiation therapy (MRT), an innovative approach able to reduce damages to normal tissues while delivering considerable doses in the lesion. Accurate dosimetry in broad-beam configuration (prior to the spatial fractionation of the incident X-ray fan) is very challenging at ultra-high dose rate synchrotron sources.The available reference dosimetry protocol based on the use of a PTW PinPoint ionization chamber was compared with alanine dosimetry at the European Synchrotron Radiation Facility (ESRF) ID17 Biomedical beamline, an orthovoltage X-ray source with an average dose rate of 11.6 kGy/s. Reference dose measurements of the alanine pellets were performed at the National Centre for Radiation Research and Technology (NCRRT) 60Co facility in Egypt. All alanine dosimeters were analysed by an electron paramagnetic resonance spectrometer.We determined a relative response rESRF = 0.932 ± 0.027 (1σ) of the alanine pellets irradiated at the ESRF compared to the 60Co facility. Considering the appropriate corrections for the ESRF polychromatic spectrum and the different field size used, our result is in agreement with the previous work of Waldeland et al. for which the utilised alanine contained the same amount of binder, and it is consistent with the works of Anton et al. and Butler et al. for which the utilised alanine contained a higher amount of binder.We confirm that alanine is an appropriate dosimeter for ultra-high dose rate calibration of orthovoltage X-ray sources.  相似文献   

5.
Adult female Sprague-Dawley rats were exposed (200 kvp X-rays) to whole body doses of 22-1320 mrad and examined for changes in the level of red blood cell precursors (RBCp) in the marrow at 5–30 weeks post-irradiation, under nonbled and phlebotomy-induced anemic stress conditions. Increases in the RBCp %, RBCp/mg marrow, and RBCp/skeleton under nonbled conditions, and a suppressed erythroid response to an induced anemia, were found after acute doses in the range of at least 70 mrad. Dosages of 22 or 44 mrad that induced no measurable changes when applied only once were found to be effective when they were employed 4 or 2 times/week, respectively. The results suggested the presence of a linear-quadratic dose-response relationship in which the quadratic function exists between 88 and 981 mrad, and the linear dependency, below 88 mrad.  相似文献   

6.
    
PurposeWe analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs).MethodsMeasurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV.ResultsThe central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55–59% and 19–22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively.ConclusionThe photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies.  相似文献   

7.
PurposeTo estimate fetal dose and its components from three-dimensional conformal radiotherapy for several malignancies presented during pregnancy.Materials and methodsFetal dose was measured from radiotherapy for Hodgkin's lymphoma and for tumors in the region of nasopharynx, breast and lung. Anthropomorphic phantoms were used to simulate an average pregnant patient at the first, second and third trimesters of gestation. Thermoluminescent dosemeters (TLD) were employed for fetal dose measurements. Phantom exposures were also performed to estimate fetal dose due to head leakage, scatter from collimators and beam modifiers and scatter generated inside the phantom (Din). All treatments were delivered for 6 MV photon beams.ResultsRadiotherapy of Hodgkin's lymphoma resulted in a fetal dose of 5.6–57.9 cGy depending upon the gestational age and the distance between the fetal level and the field edge. The corresponding dose ranges for treatment of nasopharyngeal, breast and lung cancer was 4.0–17.1 cGy, 3.9–24.8 cGy and 5.7–74.3 cGy, respectively. The Din at the first trimester of gestation was always smaller than 10 cGy for all examined malignancies. Pregnancy progression resulted in Din values above or below 10 cGy depending upon the treatment site and gestational age.ConclusionThis study provides data about the fetal exposure and the contribution of Din to the total fetal dose from conformal radiation therapy. The Din knowledge prior to patient's irradiation enables radiation oncologists and medical physicists to decide whether fetal dose may be limited to 10 cGy or less with or without the introduction of special shielding materials.  相似文献   

8.
    
PurposeRadiation received by the testes in the course of radiotherapy for rectal cancer may cause oligospermia and azospermia. We sought to determine the dose to the scrotum and testes with thermoluminescence dosimetry (TLD), and compare it to the dose calculated by 3D planning software.MethodsThe TLDs were fixed to the scrotum in six points anteriorly and posteriorly in two fractions of radiotherapy. All patients received a 50–50.4 Gy total dose in prone position with 3D-planning. The average dose of TLD measurements was compared to the average of 6 relevant point doses calculated by the planning software.ResultsThe mean scrotal dose of radiation in 33 patients as measured by TLD was 3.77 Gy (7.5% of the total prescribed dose), and the mean of point doses calculated by the planning software was 4.11 Gy (8.1% of the total dose), with no significant difference. A significant relationship was seen between the position of the inferior edge of the fields and the mean scrotal dose (P = .04). Also body mass index (BMI) was inversely related with the scrotal dose (P = .049).ConclusionWe found a dose of about 4 Gy received by the scrotum and testes from a total prescribed dose of 50 Gy in the radiotherapy of rectal carcinoma patients, with TLD measurements confirming testicular dose estimations by the planning software. This dose could be significantly harmful for spermatogenesis. Thus careful attention to the testicular dose in radiotherapy of rectal cancer for men desiring continued fertility is a necessity.  相似文献   

9.
    
Modern radiotherapy treatments require frequent imaging for accurate patient positioning relative to the therapeutic radiation beam. Imaging practices in five Finnish radiotherapy clinics were assessed and discussed from the patient dose optimization point of view. The results show that imaging strategies are not jointly established and variations exist. The organ absorbed doses depend on imaging technique and imaging frequency. In particular, organ doses from the cone beam computed tomography can have very large variations (a factor of 10–50 in breast imaging and factor of 5 in prostate imaging). The cumulative imaging organ dose from the treatment can vary by a factor of ten or more for the same treatment, depending on the chosen technique and imaging frequency. Awareness and optimization of the imaging dose in image-guided radiotherapy should be strengthened.  相似文献   

10.
    
PurposeTo evaluate the neutron dose equivalent produced by photoneutrons inside the primary barriers of a radiotherapy vault.MethodsMonte Carlo simulations were performed for investigating the production of photoneutrons as well as neutron shielding requirements. Two photon beams of 15 and 18 MV struck sheets of steel and lead, and the neutron doses were calculated at the isocenter (Piso) and at a distance of 50 cm from the inside wall (Pwall) while delivering 1 Gy to the patient. The proper thicknesses of borated polyethylene (BPE) and concrete were simulated to reduce neutron contamination.ResultsWhen the primary barrier consisted of a concrete alone, the neutron doses at Piso were 0.5 μSv/Gy and 12.8 μSv/Gy for 15- and 18-MV, respectively. At Pwall, the neutron doses were 15.8 μSv/Gy and 318.4 μSv/Gy for 15- and 18-MV, respectively. When 15 MV photons interacted with metal sheets, the neutron doses were 0.4–22.2 μSv/Gy at Piso and 15.8–812.5 μSv/Gy at Pwall, depending on the thickness and material of the metal sheets and neutron shielding. In the case of 18 MV photons with the same configuration, the neutron doses were 0.9–59.5 μSv/Gy and 73.9–5006.1 μSv/Gy for Piso and Pwall, respectively. The neutron dose delivered to the patient was reduced to the level of the dose delivered with a concrete barrier by including a 10-cm-thick BPE for each beam.ConclusionsWhen the primary barrier shielding is designed with a metal sheet inside for high energy, proper neutron shielding should be constructed to avoid undesirable photoneutron dose.  相似文献   

11.
    
This study investigated the dose absorbed by tissues surrounding artificial cardiac pacemakers during external beam radiotherapy procedures. The usefulness of out-of-field reference data, treatment planning systems, and skin dose measurements to estimate the dose in the vicinity of a pacemaker was also examined. Measurements were performed by installing a pacemaker onto an anthropomorphic phantom, and using radiochromic film and optically stimulated luminescence dosimeters to measure the dose in the vicinity of the device during the delivery of square fields and clinical treatment plans. It was found that the dose delivered in the vicinity of the cardiac device was unevenly distributed both laterally and anteroposteriorly. As the device was moved distally from the square field, the dose dropped exponentially, in line with out-of-field reference data in the literature. Treatment planning systems were found to substantially underestimate the dose for volumetric modulated arc therapy, helical tomotherapy, and 3D conformal treatments. The skin dose was observed to be either greater or lesser than the dose received at the depth of the device, depending on the treatment site, and so care should be if skin dose measurements are to be used to estimate the dose to a pacemaker. Square field reference data may be used as an upper estimate of absorbed dose per monitor unit in the vicinity of a cardiac device for complex treatments involving multiple gantry angles.  相似文献   

12.
    
PurposeThis study reports a sensitivity enhancement of gold-coated contact lens-type ocular in vivo dosimeters (CLODs) for low-dose measurements in computed tomography (CT).MethodsMonte Carlo (MC) simulations were conducted to evaluate the dose enhancement from the gold (Au) layers on the CLODs. The human eye and CLODs were modeled, and the X-ray tube voltages were defined as 80, 120, and 140 kVp. The thickness of the Au layer attached to a CLOD ranged from 100 nm to 10 μm. The thickness of the active layer ranged from 20 to 140 μm. The dose ratio between the active layer of the Au-coated CLOD and a CLOD without a layer, i.e., the dose enhancement factor (DEF), was calculated.ResultsThe DEFs of the first 20-μm thick active layer of the 5-μm thick Au-coated CLOD were 18.4, 19.7, 20.2 at 80, 120, and 140 kVp, respectively. The DEFs decreased as the thickness of the active layer increased. The DEFs of 100-nm to 5-μm thick Au layers increased from 1.7 to 5.4 for 120-kVp X-ray tube voltage when the thickness of the active layer was 140 μm.ConclusionsThe MC results presented a higher sensitivity of Au-coated CLODs (∼20-times higher than that of CLODs without a gold layer). Au-coated CLODs can be applied to an evaluation of very low doses (a few cGy) delivered to patients during CT imaging.  相似文献   

13.
14.
Radiotherapy can cause unacceptable levels of damage to normal tissues in some cancer patients. To understand the molecular mechanisms underlying radiation-induced physiological responses, and to be able to predict the radiation susceptibility of normal tissues in individual patients, it is important to identify a comprehensive set of genes responsible for radiation susceptibility. We have developed a simple and rapid 96-well screening protocol using cell proliferation assays and RNA interference to identify genes associated with radiation susceptibility. We evaluated the performance of alamarBlue-, BrdU-, and sulforhodamine B-based cell proliferation assays using the 96-well format. Each proliferation assay detected the known radiation susceptibility gene, PRKDC. In a trial screen using 28 shRNA vectors, another known gene, CDKN1A, and one new radiation susceptibility gene, ATP5G3, were identified. Our results indicate that this method may be useful for large-scale screens designed to identify novel radiation susceptibility genes.  相似文献   

15.
    
PurposeTo assess the dosimetric impact of a patient positioning device for prone breast radiotherapy and assess the accuracy of a treatment planning system (TPS) in predicting this impact.MethodsBeam attenuation and build-up dose perturbations, quantified by ionization chamber and radiochromic film dosimetry, were evaluated for 3 components of the patient positioning device: the carbon fiber baseplate, the support cushions and the support wedge for the contralateral breast. Dose calculations were performed using the XVMC dose engine implemented in the Monaco TPS. All components were included during planning CT acquisition.ResultsBeam attenuation amounted to 7.57% (6 MV) and 5.33% (15 MV) for beams obliquely intersecting the couchtop–baseplate combination. Beams traversing large sections of the support wedge were attenuated by 12.28% (6 MV) and 9.37% (15 MV). For the support cushion foam, beam attenuation remained limited to 0.11% (6 MV) and 0.08% (15 MV) per centimeter thickness. A substantial loss of dose build-up was detected when irradiating through any of the investigated components. TPS dose calculations accurately predicted beam attenuation by the baseplate and support wedge. A manual density overwrite was needed to model attenuation by the support cushion foam. TPS dose calculations in build-up regions differed considerably from measurements for both open beams and beams traversing the device components.ConclusionsIrradiating through the components of the positioning device resulted in a considerable degradation of skin sparing. Inclusion of the device components in the treatment planning CT allowed to accurately model the most important attenuation effect, but failed to accurately predict build-up doses.  相似文献   

16.
    
BackgroundThe purpose of this study was to improve the biological dosimetric margin (BDM) corresponding to different planning target volume (PTV) margins in homogeneous and nonhomogeneous tumor regions using an improved biological conversion factor (BCF) model for stereotactic body radiation therapy (SBRT).Materials and methodsThe PTV margin was 5–20 mm from the clinical target volume. The biologically equivalent dose (BED) was calculated using the linear–quadratic model. The biological parameters were α/β = 10 Gy, and the dose per fraction (DPF) was d = 3–20 Gy/fr. The isocenter was offset at intervals of 1 mm; 95% of the clinical target volume covered more than 90% of the prescribed physical dose, and BED was defined as biological and physical DMs. The BCF formula was defined as a function of the DPF.ResultsThe difference in the BCF caused by the DPF was within 0.05 for the homogeneous and nonhomogeneous phantoms. In the virtual nonhomogeneous phantom, the data with a PTV margin of 10–20 mm were not significantly different; thus, these were combined to fit the BCF. In the virtual homogeneous phantom, the BCF was fitted to each PTV margin.ConclusionsThe current study improved a scheme to estimate the BDM considering the size of the PTV margin and homogeneous and nonhomogeneous regions. This technique is expected to enable BED-based treatment planning using treatment systems based on physical doses for SBRT.  相似文献   

17.
    
BackgroundCurrently, CBCT system is an indispensable component of radiation therapy units. Because of that, it is important in treatment planning and diagnosis. CBCT is also an crucial tool for patient positioning and verification in image-guided radiation therapy (IGRT). Therefore, it is critical to investigate the patient organ doses arising from CBCT imaging. The purpose of this study is to evaluate patient organ doses and effective dose to patients from three different protocols of Elekta Synergy XVI system for kV CBCT imaging examinations in image guided radiation therapy.Materials and methodsOrgan dose measurements were done with thermoluminescent dosimeters in Alderson RA NDO male phantom for head & neck (H&N), chest and pelvis protocols of the Elekta Synergy XVI kV CBCT system. From the measured organ dose, effective dose to patients were calculated according to the International Commission on Radiological Protection 103 report recommendations.ResultsFor H&N, chest and pelvis scans, the organ doses were in the range of 0.03–3.43 mGy, 6.04–22.94 mGy and 2.5–25.28 mGy, respectively. The calculated effective doses were 0.25 mSv, 5.56 mSv and 4.72 mSv, respectively.ConclusionThe obtained results were consistent with the most published studies in the literature. Although the doses to patient organs from the kV CBCT system were relatively low when compared with the prescribed treatment dose, the amount of delivered dose should be monitored and recorded carefully in order to avoid secondary cancer risk, especially in pediatric examinations.  相似文献   

18.
    
In this study, we measured environmental outdoor gamma dose rates (terrestrial and cosmic) in 204 stations across the province of Artvin. The average outdoor gamma dose rate for the province of Artvin was found to be 174.81 nGy/h. The radiological map of Artvin was drawn with the help of measured outdoor gamma dose rates. Annual effective dose equivalent and lifetime cancer risk values were figured up for the adults in Artvin province by using measured outdoor gamma dose rates. The average annual dose equivalent and excess lifetime cancer risk were 214.5 μSv/y and 7.5 × 10?4, respectively. The values acquired were compared with the similar studies done around the world. The average annual effective dose equivalent and excess lifetime cancer risk were found to be approximately three times higher than the world average.  相似文献   

19.
Concentrations of some radionuclides, including137Cs, in desert truffles in Kuwait were studied and compared with similar samples from other countries in the Middle East, namely Iran, Egypt, and Tunisia. In addition, sand samples from Kuwait were assayed to calculate the transfer factor of the radionuclides under consideration. The measured concentrations of40K,226Ra, and137Cs show that137Cs is much higher in Egyptian samples, whereas40K is much lower in samples from Tunisia. The average effective dose equivalent calculated for the Kuwaiti population according to their diet habits was found to be in the range 0.14-0.23 ΜSv/a. The results are compared with values from other countries.  相似文献   

20.

Aim

The aim of this study is to calculate neutron contamination at the presence of circular cones irradiating by 18 MV photons using Monte Carlo code.

Background

Small photon fields are one of the most useful methods in radiotherapy. One of the techniques for shaping small photon beams is applying circular cones made of lead. Using this method in high energy photon due to neutron contamination is a crucial issue.

Materials and methods

Initially, Varian linac producing 18 MV photons was simulated and after validating the code, various circular cones were also simulated. Then, the number of neutrons, neutron equivalent dose and absorbed dose per Gy of photon dose were calculated along the central axis.

Results

Number of neutrons per Gy of photon dose had their maximum value at depth of 2 cm and these values for 5, 10, 15, 20 and 30 mm circular cones were 9.02, 7.76, 7.61, 6.02 and 5.08 (n cm?2 Gy?1), respectively. Neutron equivalent doses per Gy of photon dose had their maximum at the surface of the phantom and these values for mentioned collimators were 1.48, 1.33, 1.31, 1.12 and 1.08 (mSv Gy?1), respectively. Neutron absorbed doses had their maximum at the surface of the phantom and these values for mentioned collimators sizes were 103.74, 99.71, 95.77, 81.46 and 78.20 (μGy/Gy), respectively.

Conclusions

As the field size gets smaller, number of neutrons, equivalent and absorbed dose per Gy of photon increase. Also, neutron equivalent dose and absorbed dose are maximum at the surface of phantom and then these values will be decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号