首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 +/- 5 yrs, height 1.63 +/- 0.06m and body mass 66.26 +/- 4.6kg: mean +/- SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14rad.s(-1) (through 90 degrees ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60 degrees of knee flexion. Rectal temperature was measured during 30min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P< 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05rad.s(-1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05rad.s(-1), extensors at 3.14rad.s(-1), and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

2.
《Chronobiology international》2013,30(4-5):645-660
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 ± 5 yrs, height 1.63 ± 0.06 m and body mass 66.26 ± 4.6 kg: mean ± SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14 rad.s?1 (through 90° ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60° of knee flexion. Rectal temperature was measured during 30 min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P < 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05 rad.s?1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05 rad.s?1, extensors at 3.14 rad.s?1, and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

3.
The aim of the study was to examine alterations in contractile and neural processes in response to an isometric fatiguing contraction performed with EMG feedback (constant-EMG task) when exerting 40% of maximal voluntary contraction (MVC) torque with the knee extensor muscles. A task with a torque feedback (constant-torque task) set at a similar intensity served as a reference task. Thirteen men (26+/-5 yr) attended two experimental sessions that were randomized across days. Endurance time was greater for the constant-EMG task compared with the constant-torque task (230+/-156 s vs. 101+/-32s, P<0.01). Average EMG activity for the knee extensor muscles increased from 33.5+/-4.5% to 54.7+/-21.7% MVC EMG during the constant-torque task (P<0.001), whereas the torque exerted during the constant-EMG task decreased from 42.8+/-3.0% to 17.9+/-5.6% MVC torque (P<0.001). Comparable reductions in knee extensors MVC (-15.7+/-8.7% for the constant-torque task vs. -17.5+/-9.8% for the constant-EMG task, P>0.05) and voluntary activation level were observed at exhaustion. In contrast, excitation-contraction coupling process, assessed with an electrically evoked twitch and doublet, was altered significantly more at the end of the constant-EMG task despite the absence of M-wave changes for both tasks. Present results suggest that prolonged contractions using EMG biofeedback should be used cautiously in rehabilitation programs.  相似文献   

4.
The purposes of this study were to determine 1) the relationships of self-reported function scores in patients with knee osteoarthritis (OA) to both maximal isometric torque and to isotonic power at a variety of loads, and 2) the degree to which muscle volume (MV) or voluntary activation (VA) are associated with torque and power measures in this population. Isometric maximal voluntary contraction (MVC) torque and isotonic power [performed at loads corresponding to 10, 20, 30, 40, and 50% MVC, and a minimal load ("Zero Load")] were measured in 40 participants with knee OA. Functional ability was measured with the Western Ontario and McMaster Osteoarthritis Index (WOMAC) function subscale. MV was determined with magnetic resonance imaging, and VA was measured with the interpolated twitch technique. In general, power measured at lower loads (Zero Load and 10-30% MVC, r(2) = 0.21-0.28, P < 0.05) predicted a greater proportion of the variance in function than MVC torque (r(2) = 0.18, P < 0.05), with power measured at Zero Load showing the strongest association (r(2) = 0. 28, P < 0.05). MV was the strongest predictor of MVC torque and power measures in multiple regression models (r(2) = 0.42-0.72). VA explained only 6% of the variance in MVC torque and was not significantly associated with power at any load (P > 0.05). Quadriceps MVC torque and power are associated with self-reported function in knee OA, but muscle power at lower loads is more predictive of function than MVC torque. The variance in MVC torque and power between participants is due predominantly to differences in MV and has little to do with deficits in VA.  相似文献   

5.
This study investigated the effects of dynamic knee extension and flexion fatiguing task on torque and neuromuscular responses in young and older individuals. Eighteen young (8 males; 25.1 ± 3.2 years) and 17 older (8 males; 69.7 ± 3.7 years) volunteered. Following a maximal voluntary isometric contraction test, participants performed a fatiguing task involving 22 maximal isokinetic (concentric) knee extension and flexion contractions at 60°/s, while surface EMG was recorded simultaneously from the knee extensors (KE) and flexors (KF). Fatigue-induced relative torque reductions were similar between age groups for KE (peak torque decrease: 25.15% vs 26.81%); however, KF torque was less affected in older individuals (young vs older peak torque decrease: 27.6% vs 11.5%; p < 0.001) and this was associated with greater increase in hamstring EMG amplitude (p < 0.001) and hamstrings/quadriceps peak torque ratio (p < 0.01). Furthermore, KE was more fatigable than KF only among older individuals (peak torque decrease: 26.8% vs 11.5%; p < 0.001). These findings showed that the age-related fatigue induced by a dynamic task was greater for the KE, with greater age-related decline in KE compared to KF.  相似文献   

6.
The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women.  相似文献   

7.
The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n = 23) and ankle plantar flexion (n = 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 +/- 2.8 %) was significantly greater than that of the patella tendon (8.3 +/- 2.4 %), p < 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 +/- 1.4 %) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 +/- 1.4 %), p < 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.  相似文献   

8.
The purpose of this investigation was to determine the mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus torque (or force) relationships during isokinetic and isometric muscle actions of the biceps brachii. Ten adults (mean +/- SD age = 21.6 +/- 1.7 years) performed submaximal to maximal isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects randomly performed submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Polynomial regression analyses indicated that MMG amplitude increased linearly with torque during both the isokinetic (r2 = 0.982) and isometric (r2 = 0.956) muscle actions. From 80% to 100% of isometric MVC, however, MMG amplitude appeared to plateau. Cubic models provided the best fit for the MMG MPF versus isokinetic (R2 = 0.786) and isometric (R2 = 0.940) torque relationships, although no significant increase in MMG MPF was found from 10% to 100% of isokinetic PT. For the isometric muscle actions, however, MMG MPF remained relatively stable from 10% to 50% MVC, increased from 50% to 80% MVC, and decreased from 80% to 100% MVC. The results demonstrated differences in the MMG amplitude and MPF versus torque relationships between the isokinetic and isometric muscle actions. These findings suggested that the time and frequency domains of the MMG signal may be useful for describing the unique motor control strategies that modulate dynamic versus isometric torque production.  相似文献   

9.
The present study aimed to investigate the effects of low-load resistance training with vascular occlusion on the specific tension and tendon properties by comparing with those of high-load training. Nine participants completed 12 weeks (3 days/week) of a unilateral isotonic training program on knee extensors. One leg was trained using low load (20% of 1 RM) with vascular occlusion (LLO) and other leg using high load (80% of 1 RM) without vascular occlusion (HL). Before and after training, maximal isometric knee extension torque (MVC) and muscle volume were measured. Specific tension of vastus lateralis muscle (VL) was calculated from MVC, muscle volume, and muscle architecture measurements. Stiffness of tendon-aponeurosis complex in VL was measured using ultrasonography during isometric knee extension. Both protocols significantly increased MVC and muscle volume of quadriceps femoris muscle. Specific tension of VL increased significantly 5.5% for HL, but not for LLO. The LLO protocol did not alter the stiffness of tendon-aponeurosis complex in knee extensors, while the HL protocol increased it significantly. The present study demonstrated that the specific tension and tendon properties were found to remain following low-load resistance training with vascular occlusion, whereas they increased significantly after high-load training.  相似文献   

10.
The speed-torque relationship of the right knee extensor muscle group was investigated in eight untrained subjects (28 +/- 2 yr old). Torque was measured at a specific knee angle during isokinetic concentric or eccentric actions at nine angular velocities (0.17-3.66 rad/s) and during isometric actions. Activation was by "maximal" voluntary effort or by transcutaneous tetanic electrical stimulation that induced an isometric torque equal to 60% (STIM 1) or 45% (STIM 2) of the voluntary isometric value. Torque increased (P less than 0.05) to 1.4 times isometric as the speed of eccentric actions increased to 1.57 rad/s for STIM 1 and STIM 2. Thereafter, increases in eccentric speed did not further increase torque. Torque did not increase (P greater than 0.05) above isometric for voluntary eccentric actions. As the speed of concentric actions increased from 0.00 to 3.66 rad/s, torque decreased (P less than 0.05) more (P less than 0.05) for both STIM 1 and STIM 2 (two-thirds) than for voluntary activation (one-half). As a result of these responses, torque changed three times as much (P less than 0.05) across speeds of concentric and eccentric actions with artificial (3.4-fold) than voluntary (1.1-fold) activation. The results indicate that with artificial activation the normalized speed-torque relationship of the knee extensors in situ is remarkably similar to that of isolated muscle. The relationship for voluntary activation, in contrast, suggests that the ability of the central nervous system to activate the knee extensors during maximal efforts depends on the speed and type of muscle action performed.  相似文献   

11.
Voluntary muscle activation varies with age and muscle group.   总被引:3,自引:0,他引:3  
The consistency and the number of attempts required to achieve maximal voluntary muscle activation have not been documented and compared between young and old adults. Furthermore, few studies have contrasted activation between functional pairs of muscle groups, and no study has tested upper limb muscles. The purpose of this study was to measure and compare voluntary muscle activation of the elbow flexors and extensors in young and old men over two separate test sessions. With the method of twitch interpolation to measure activation, six young (24 +/- 1 yr) and six old (83 +/- 4 yr) men performed five maximal voluntary contractions (MVC) during each session for each muscle group. Elbow flexion and extension MVC was less (43 and 47%, respectively) in the old men, yet the best maximal voluntary muscle activation was similar between age groups. However, when all 10 attempts at MVC were compared, the mean activation scores were slightly less (approximately 5%) in the elbow extensors but were approximately 11% less (P < 0.001) in the elbow flexors of old men, compared with young men. During the second session, there was a significant improvement of 13% (P < 0.005) in mean elbow flexor activation in the old men. There were no session differences for either muscle group for the young men. The results indicate that, for aged men, elbow flexor maximal activation is achieved less frequently compared with elbow extensors, and thus mean activation for elbow flexors is less than for elbow extensors. However, if sufficient attempts are provided, the best effort for the old men is not different from that of the young men for either muscle group.  相似文献   

12.
The purpose of this study was to examine the effect of graded conditioning contractions of the antagonist knee flexor muscles on the output characteristics of knee extensor muscles in healthy humans. Eight male university students performed maximum isometric contractions of knee extensors, preceded by isometric conditioning contractions of the antagonist knee flexors. The developed force and electromyographic (EMG) amplitudes of the knee extensors after the conditioning contraction were measured and compared with those of simple knee extension without conditioning. The forces of the conditioning flexor contraction were set at three levels: low (20% of maximum voluntary contraction: MVC), moderate (60% of MVC), and high (100% of MVC). The EMG amplitudes of the vastus medialis, vastus lateralis, and rectus femoris muscle were recorded and the root mean square amplitudes were calculated. The strongest enhancement of the extension force was obtained by moderate intensity conditioning contraction (108.95+/-1.87% of simple knee extension), although high intensity conditioning also induced a significant increase (105.41+/-2.69%). Low intensity conditioning did not cause a significant enhancement of the contraction force (103.17+/-2.99%). Similarly, the EMG amplitudes were significantly increased by moderate and/or high conditioning. These results suggest that antagonist conditioning contraction of moderate intensities is sufficient and may be optimal to potentiate knee extensor contraction.  相似文献   

13.
The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.  相似文献   

14.
Isometric force- or torque-time parameters are commonly reported in the research literature. The processing methods of the electronic dynamometer-derived signal may influence the outcome measures. This study determined the influence of filtering and sample rate (SR) on isometric torque-time parameters and provides specific signal processing recommendations for future studies. Twenty-three subjects performed 49 isometric maximum voluntary contractions (MVCs) of the knee extensors on an isokinetic dynamometer. Outcome measures included peak torque (PT), and rate of torque development at peak (RTDPEAK), 50 (RTD50) and 200 (RTD200) ms for seven filter conditions including low-pass filter cutoffs at 5, 10, 20, 50, 100 and 150 Hz and a notch filter at 100 and 200 Hz. Comparisons were also made across four SR conditions at 100, 500, 1000 and 2000 Hz. The RTDPEAK variable was markedly changed (−5.4 to −37.9%) for all filter frequencies compared to the 150 Hz condition and the RTD50 variable was altered for all frequencies between 50 and 5 Hz. No differences were found for RTD200. For SR, compared to the 2000 Hz condition, differences were revealed for the 100 Hz condition for the RTDPEAK and RTD50 variables. The filtering or SR did not alter PT across any of the conditions. The filter and SR applied to the signal was capable of distorting the MVC signal and skewing the torque–time parameters, specifically for the early and maximum RTD variables of the MVC curve (RTD50 and RTDPEAK). For traditional isokinetic dynamometers, a low-pass filter cutoff of 150 Hz and a SR of at least 1000 Hz is recommended when assessing early isometric force- or torque-time MVC parameters.  相似文献   

15.
Objectives:It is unclear whether peak torque and rate of torque development (RTD) measurements can characterize functional differences in older adults according to their performance on a six-minute walk test. This study aimed to examine the efficacy of isometric peak torque and RTD characteristics of the knee extensors to differentiate between functional status in older women who are able (higher functioning) versus those who are unable (lower functioning) to walk 550 m in six minutes.Methods:Ten higher functioning (67±4 years) and 10 lower functioning (68±4 years) older women performed three isometric knee extension maximal voluntary contractions followed by a six-minute walk test. Peak torque and early (RTD100), late (RTD200), and maximum (Peak RTD) RTD measurements were obtained from each contraction.Results:The higher functioning group exhibited greater peak torque, Peak RTD, RTD100, and RTD200 compared to the lower functioning group (P≤0.011), with larger differences occurring for RTD characteristics (39.9-54.9%) than peak torque (20.3%). Multiple regression analysis indicated that RTD200 was the single best predictor of the distance covered during the six-minute walk test (R2=0.437, P=0.002).Conclusions:These findings suggest that knee extensor muscle strength, and in particular RTD, may be an effective discriminator and predictor of walking performance ability in older women.  相似文献   

16.
This study compared the effects of 6-week whole-body vibration (WBV) training programs with different frequency and peak-to-peak displacement settings on knee extensor muscle strength and power. The underlying mechanisms of the expected gains were also investigated. Thirty-two physically active male subjects were randomly assigned to a high-frequency/high peak-to-peak displacement group (HH; n = 12), a low-frequency/low peak-to-peak displacement group (LL; n = 10) or a sham training group (SHAM; n = 10). Maximal voluntary isometric, concentric and eccentric torque of the knee extensors, maximal voluntary isometric torque of the knee flexors, jump performance, voluntary muscle activation, and contractile properties of the knee extensors were assessed before and after the training period. Significant improvement in knee extensor eccentric voluntary torque (P < 0.01), knee flexor isometric voluntary torque (P < 0.05), and jump performance (P < 0.05) was observed only for HH group. Regardless of the group, knee extensor muscle contractile properties (P < 0.05) were enhanced. No modification was observed for voluntary muscle activation or electrical activity of agonist and antagonist muscles. We concluded that high-frequency/high peak-to-peak displacement was the most effective vibration setting to enhance knee extensor muscle strength and jump performance during a 6-week WBV training program and that these improvements were not mediated by central neural adaptations.  相似文献   

17.
The force in maximal voluntary isometric contraction of elbow flexors, knee extensors, trunk flexors, and trunk extensors was measured in a representative sample of Danish school children 16-19 years of age (128 boys and 165 girls). The 16 year old boys were 177.8 cm in height, with a mean increase of 1.4 cm per year up to 19 years, and they weighed 66.0 kg, with a mean increase of 1.8 kg per year up to age 19. The girls were 168.0 cm in height with no increase up to age 19, and their mean weight was 59.6 kg, which increased by 1.8 kg per year up to age 19 (p greater than 0.05). The strength in the four muscle groups for boys a girls respectively was 281 N and 182 N for elbow flexors, 574 N and 419 N for knee extensors, 601 N and 404 N for trunk flexors and 664 N and 499 N for trunk extensors. An increase in strength in the elbow and trunk flexors and a decrease in strength in the trunk extensors in relation to values obtained in 1956 was seen, and a difference in strength per kg lean body mass between the boys and the girls was also observed. The estimated strength per unit cross-sectional area of muscle was 38 N X cm-2 in both boys and girls.  相似文献   

18.
We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes'' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players'' physical conditioning level.  相似文献   

19.
Indices of electrically stimulated and maximal voluntary isometric muscle torgue and the phosphate content of myosin phosphorylatable light chains (P light chains) were studied during recovery following a 60-s maximal voluntary isometric contraction (MVC) in 21 human subjects. Analysis of muscle biopsy samples revealed that immediately after the 60-s MVC there were significant decreases in ATP (-15%) and phosphocreatine (-82%), and lactate concentration increased by 17-fold. All indices of muscle torque production were reduced by the 60-s MVC, but the twitch torque and torque at 10 Hz were relatively less reduced compared with the torque at 20 and 50 Hz or a 1-s MVC. Between 3 and 6 min of recovery, twitch torque and torque at 10 Hz stimulation were significantly potentiated, reaching peak values of 125 and 134%, respectively, compared with rest. Phosphate content of the fast and two slow P light chains was significantly increased over rest levels immediately after and 4 min after the 60-s MVC. These results suggest that myosin P light-chain phosphorylation could provide a mechanism to increase human muscle torque under conditions of submaximal contractile element activation following fatigue.  相似文献   

20.
This study compared the patterns of mechanomyographic (MMG) amplitude and mean power frequency vs. torque relationships in men and women during isometric muscle actions of the biceps brachii. Seven men (mean age 23.9 +/- 3.5 yrs) and 8 women (mean 21.0 +/- 1.3 yrs) performed submaximal to maximal isometric muscle actions of the dominant forearm flexors. Following determination of the isometric maximum voluntary contraction (MVC), they randomly performed submaximal step muscle actions in 10% increments from 10% to 90% MVC. Polynomial regression analyses indicated that the MMG amplitude vs. isometric torque relationship for the men was best fit with a cubic model (R(2) = 0.983),,where MMG amplitude increased slightly from 10% to 20% MVC, increased rapidly from 20% to 80% MVC, and plateaued from 80% to 100% MVC. For the women, MMG amplitude increased linearly (r(2) = 0.949) from 10% to 100% MVC. Linear models also provided the best fit for the MMG mean power frequency vs. isometric torque relationship in both the men (r(2) = 0.813) and women (r(2) = 0.578). The results demonstrated gender differences in the MMG amplitude vs. isometric torque relationship, but similar torque-related patterns for MMG mean power frequency. These findings suggested that the plateau in MMG amplitude at high levels of isometric torque production for the biceps brachii in the men, but not the women, may have been due to greater isometric torque, muscle stiffness, and/or intramuscular fluid pressure in the men, rather than to differences in motor unit activation strategies for modulating isometric torque production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号