共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the influence of lactic acid fermentation on the metabolic profile of ginkgo kernel juice was studied. For this purpose, three lactic acid bacteria (LAB), Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus casei, were selected. The results showed that all the lactobacilli grew well in ginkgo kernel juice with viable cell counts exceeding 8.0 Log CFU/mL. The organic acid contents underwent dynamic changes, and the lactic acid production reached more than 3 g/L. The consumption of sugars and free amino acids by LAB was evident. Meanwhile, more than 70% of the ginkgolic acids were degraded by LAB, and the final concentrations in ginkgo kernel juice were below 1 mg/L after 48 h of fermentation. In contrast, the terpene lactones contents in fermented ginkgo kernel juice exceed 20 mg/L, which was 1.6-fold higher than that in the unfermented juice. Certain phenolics were significantly enriched, and the total phenolic content increased by approximately 9% through fermentation. In addition, lactic acid fermentation significantly enhanced the antioxidant and antimicrobial activities of ginkgo kernel juice. Overall, the results indicated that lactic acid fermentation can effectively improve the nutritional value and safety of ginkgo kernel juice. 相似文献
2.
Amit Kumar Rai N. Bhaskar Prakash M. Halami K. Indirani P. V. Suresh N. S. Mahendrakar 《Applied microbiology and biotechnology》2009,83(4):757-766
Lactic acid bacteria (LAB) species isolated from limed and delimed tannery fleshings (TF) were evaluated for their fermentation
efficiency and antibacterial property. The native LAB isolates efficiently fermented TF and resulted in a fermented mass with
antioxidant properties, indicating their potential for effective eco-friendly bioconversion of TF. From among the LAB isolated,
a proteolytic isolate showing better antimicrobial spectrum and reasonably good fermentation efficiency was identified as
Enterococcus faecium HAB01 based on various biochemical and molecular tests. This isolate afforded a better degree of hydrolysis (81.36%) of TF
than Pediococcus acidilactici (54.64%) that was previously reported by us. The bacteriocin produced by E. faecium was found to be antagonistic to several human pathogens including Listeria, Aeromonas, Staphylococcus and Salmonella. Further, E. faecium HAB01 bacteriocin was thermostable and had a molecular weight of around 5 kDa, apart from being stable at both acidic and
alkaline conditions. The bacteriocin was unstable against proteases. 相似文献
3.
4.
Microbiology of the malolactic fermentation: Molecular aspects 总被引:4,自引:0,他引:4
Aline Lonvaud-Funel 《FEMS microbiology letters》1995,126(3):209-214
Abstract Malolactic fermentation conducted by lactic acid bacteria follows alcoholic fermentation during winemaking, and several positive effects make it indispensable for most wines. Research has focused on the growth and physiology of lactic acid bacteria in wine; resulting in the design of malolactic starter cultures. Future work on these starters will concentrate on aromatic changes as additional criteria for strain selection. Although the main features of the malolactic enzyme and its gene are known, the detailed mechanism of the malolactic reaction remains unclear. Cloning and expression of this activity in enological strains of Saccharomyces cereuisiae might be one of the next most important advances in the control of malic acid degradation in wine. 相似文献
5.
【背景】泡梨是云南省常见的一种腌渍水果,在云南加工食用已经有一百多年的历史,因其味道酸甜可口、风味独特而深受人们喜爱,而目前对泡梨中微生物种群的系统分析和发酵原理的研究尚未见报道。【目的】研究乳酸菌在云南泡梨中的分布及应用,阐明乳酸菌种类对泡梨发酵中风味物质的影响。【方法】从云南省4个不同地区采集12份泡梨样品,经菌落菌体形态、生理生化特性和16SrRNA基因序列分析进行菌种分离与鉴定。利用分离的乳酸菌为菌种进行泡梨的制备,采用GC-MS技术对人工接种的复合乳酸菌发酵与自然发酵泡梨进行风味物质的分析与感官评价。【结果】分离鉴定出79株植物乳杆菌(Lactobacillus plantarum)、 3株类植物乳杆菌(Lactobacillus paraplantarum)、1株戊糖乳杆菌(Lactobacillus pentosus)、1株干酪乳杆菌(Lactobacillus casei)、2株副干酪乳杆菌(Lactobacillus paracasei)和1株短乳杆菌(Lactobacillus brevis),植物乳杆菌为泡梨发酵中的优势菌。将分离所得乳酸菌用于泡梨制备的结果表明,... 相似文献
6.
Abstract Many factors contribute to a successful natural fermentation of carbohydrate-rich food and feed products. Metabolic activities of lactic acid bacteria (LAB) play a leading role. Their ability to rapidly produce copious amounts of acidic end products with a concomitant pH reduction is the major factor in these fermentations. Although their specific effects are difficult to quantitate, other LAB metabolic products such as hydrogen peroxide and diacetyl can also contribute to the overall antibiosis and preservative potential of these products. The contribution of bacteriocins is also difficult to evaluate. It is suggested that they may play a role in selecting the microflora which initiates the fermentation. Bacteriocins are believed to be important in the ability of LAB to compete in non-fermentative ecosystems such as the gastro-intestinal tract. During the past few decades interest has arisen in the use of the varied antagonistic activities of LAB to extent the shelf-life of protein-rich products such as meats and fish. Recent findings indicate that the newly discovered Lactobacillus reuteri reuterin system may be used for this purpose. 相似文献
7.
8.
【背景】4-甲基苯酚是众多发酵食品中的异嗅味物质,阈值较低,如白酒中百万分之一的4-甲基苯酚即可对白酒风味造成不利影响。【目的】构建能消减4-甲基苯酚的乳酸菌菌株,探索其在白酒酿造中的应用潜力。【方法】将来源于谷氨酸棒杆菌的4-甲基苯基磷酸酯合成酶编码基因creI与creH在短乳杆菌中表达,探究过表达菌株对白酒酿造体系中4-甲基苯酚的消减能力。【结果】creIH过表达菌株在液体培养基中可有效消减4-甲基苯酚,消减能力达2 130μg/L;在模拟白酒固态酿造体系中,creIH过表达菌株消减4-甲基苯酚的能力达530μg/kg,消减率为37.9%。【结论】首次构建了4-甲基苯酚的消减乳酸菌菌株,为白酒酿造体系中4-甲基苯酚的消减提供了新的策略。 相似文献
9.
Stephan Wullschleger Christoph Jans Clelia Seifert Sarah Baumgartner Christophe Lacroix Bassirou Bonfoh Marc J.A. Stevens Leo Meile 《Systematic and applied microbiology》2018,41(2):65-72
Ten bacterial isolates belonging to the genus Vagococcus were obtained from Malian sour milk fènè produced from spontaneously fermented cow milk. However, these isolates could not be assigned to a species upon initial comparative 16S rRNA gene sequence analysis and were therefore further characterized. Rep-PCR fingerprinting of the isolates yielded four strain clusters represented by strains CG-21T (=DSM 21459T), 24CA, CM21 and 9H. Sequence identity of the 16S rRNA gene of DSM 21459T to its closest relative species Vagococcus penaei was 97.9%. Among the four rep strain clusters, DSM 21459T and 24CA shared highest 16S rRNA gene sequence identity of 99.6% while CM21 and 9H shared 98.6–98.8% with DSM 21459T and V. penaei CD276T. DSM 21459T and 24CA were thus subjected to a polyphasic typing approach. The genome of DSM 21459T featured a G + C content of 34.1 mol% for a 2.17-bp chromosome and a 15-kbp plasmid. Average nucleotide identity (ANI) of DSM 21459T to Vagococcus fluvialis bH819, V. penaei CD276T were 72.88%, 72.63%, respectively. DNA–DNA hybridization (DDH) similarities of strain DSM 21459T to other Vagococcus species were <42.0%. ANI and DDH findings strongly supported the 16S rRNA gene phylogenetic tree delineations. The fatty acid patterns of DSM 21459T was palmitic acid (C 16:0, 24.5%), oleic acid (C 18:1-ω9c, 32.8%), stearic acid (C 18:0, 18.9%). General physiological characterization of DSM 21459T and 24CA were consistent with those of the genus Vagococcus. Strain DSM 21459T and further strains are therefore considered to belong to a novel species, for which the nomenclature Vagococcus teuberi sp. nov. is proposed. The type strain is named CG-21T (=DSM 21459T and LMG 24695T). 相似文献
10.
Heterofermentative lactic acid bacteria (LAB) such as Leuconostoc, Oenococcus, and Lactobacillus strains ferment pentoses by the phosphoketolase pathway. The extra NAD(P)H, which is produced during growth on hexoses, is transferred to acetyl-CoA, yielding ethanol. Ethanol fermentation represents the limiting step in hexose fermentation, therefore, part of the extra NAD(P)H is used to produce erythritol and glycerol. Fructose, pyruvate, citrate, and O2 can be used in addition as external electron acceptors for NAD(P)H reoxidation. Use of the external acceptors increases the growth rate of the bacteria. The bacteria are also able to ferment organic acids like malate, pyruvate, and citrate. Malolactic fermentation generates a proton potential by substrate transport. Pyruvate fermentation sustains growth by pyruvate disproportionation involving pyruvate dehydrogenase. Citrate is fermented in the presence of an additional electron donor to acetate and lactate. Thus, heterofermentative LAB are able to use a variety of unusual fermentation reactions in addition to classical heterofermentation. Most of the reactions are significant for food biotechnology/microbiology. 相似文献
11.
Arthitaya Kawee-ai 《Preparative biochemistry & biotechnology》2013,43(10):997-1009
AbstractSelect LAB, including Lactobacillus fermentum TISTR 950, Lactobacillus plantarum TISTR 2265 and Lactobacillus casei TISTR 1500 were investigated for their ability to enhance GABA, TPC and the antioxidant activity of perilla seed juice. L. casei TISTR 1500 produced higher GABA and TPC contents and presented higher antioxidant activity than other strains. Furthermore, the optimal fermentation condition to perilla seeds inoculated with L. casei TISTR 1500 to improve the GABA, TPC and antioxidant activity was performed using 33 full factorial design. The final optimal values for perilla fermentation was found at fermentation time of 4.82 days (4 days 19?h 40?min), initial substrate of 5% (w/v) and fermentation temperature of 30.07?°C. Under the optimal fermentation condition, an observed values of GABA, TPC, ABTS, DPPH and FRAP were 71.46 µg/g, 3175.00 µg GAE/g, 1991.40 µg TEAC/g, 9178.29 µg TEAC/g and 7753.34 µg TEAC/g, respectively, which was 3.3, 0.9, 2.9, 10.8 and 10.2 times higher than that of unfermented perilla seeds, and 2.1, 0.8, 0.9, 10 and 9.2 times of fermented perilla seeds before the optimization. These results may provide the foundation to further target in industrial application for the production of plant-based and develop functional perilla seed products containing GABA.
- Highlights
Improved GABA, TPC and antioxidant contents were found using Lactobacillus casei TISTR 1500
Full factorial design applied to optimize fermented perilla seeds by lactic acid fermentation
The optimized conditions dramatically increased GABA and TPC contents
12.
【目的】通过生理生化特性,结合16S r RNA基因序列分析研究青海湖裸鲤肠道乳酸菌分离株的多样性,并对这些代表株的抑菌活性进行初步探讨,以期筛选具有高效抑菌活性的鱼源益生菌。【方法】对分离的47株乳酸菌代表株进行p H、温度生长范围、耐盐性等生理生化特征检测,结合16S r RNA基因序列对已分离到的乳酸菌进行基因分型和菌种鉴定,采用牛津杯双层平板法检测乳酸菌代表株的抑菌活性。【结果】鉴定结果显示:23株为Lactobacillus fuchuensis(48.94%),12株为Lactobacillus curvatus(25.53%),3株为Leuconostoc fallax(6.38%),2株为Lactobacillus sakei(4.26%),2株为Weissella ceti(4.26%);2株为Lactococcus cremoris(4.26%),1株为Leuconostoc lactis(2.13%),1株为Weissella minor(2.13%),1株为Enterococcus devriesei(2.13%)。qz1217、qz1196、qz1220所在的A、B、C三组乳酸菌在5-50°C的温度范围内生长良好,qz1196、qz1220所在的B、C组在pH 3.0-10.0的范围内生长良好,几乎所有乳酸菌都具有耐6.5%盐浓度特性。13株乳酸菌菌株对6种病原菌都具有抑制作用。通过排除酸、过氧化氢实验,发现上清液仍然具有抑菌活性。对qz1251发酵液进行蛋白酶处理,抑菌活性消失,确定其抑菌物质属于蛋白类物质,是一种细菌素。【结论】青海湖裸鲤肠道附着乳酸菌的多样性为益生性乳酸菌的筛选提供优质资源及数据参考。 相似文献
13.
Fungal species causing fruit rot of jackfruit have been isolated from seven different locations of Birbhum and Burdwan districts of West Bengal, India. Each isolate showed more or less similar microscopic characteristics. A representative strain VBAM1, isolated from a severely infected jackfruit was identified as Rhizopus stolonifer by 28S rDNA sequence homology. Increased reducing sugar content in pectin broth indicates pectinase production by the pathogen. The pathogen was not inhibited by ⩾500 μg/ml of Mancozeb and Bavistin. Copper oxychloride, Blytone 50% a.i. showed antifungal activity at comparatively lower concentration (200 μg/ml). Two rhizospheric bacterial strains, Burkholderia cenocepacia VBC7 and Pseudomonas poae VBK1, and three different strains of Lactococcus lactis subsp. lactis can produce significant zones of inhibition against the pathogen in dual culture overlay plates. They induced mycelia breakage of pathogen as evidenced from scanning electron micrographs. When applied to whole plants, the strains reduced or prevented disease and when applied postharvest to Rhizopus inoculated fruit delayed and/reduced disease incidence. These agents were also re-isolated from the applied surfaces and survived for long time when mixed with suitable carrier base indicating stability in a formulation over time. 相似文献
14.
Watanabe I Nakamura T Shima J 《Journal of industrial microbiology & biotechnology》2008,35(10):1117-1122
Contamination of Lactobacillus sp. in the fermentation broth of bioethanol production decreases ethanol production efficiency. Although the addition of lactate to the broth can effectively inhibit the growth of Lactobacillus sp., it also greatly reduces the fermentation ability of Saccharomyces cerevisiae. To overcome this conflict, lactate-tolerant yeast strains were screened. Candida glabrata strain NFRI 3164 was found to exhibit both higher levels of lactate tolerance and fermentation ability. Co-cultivation of C. glabrata was performed with Lactobacillus brevis and Lb. fermentum, which were reported as major contaminating bacteria during bioethanol production, in culture medium containing 2% lactate. Under these culture conditions, the growth of Lactobacillus strains was greatly inhibited, but the ethanol production of C. glabrata was not significantly affected. Our data show the possibility of designing an effective fuel ethanol production process that eliminates contamination by Lactobacillus strains through the combined use of lactate addition and C. glabrata. 相似文献
15.
16.
目的 使用DGGE和实时荧光定量PCR分析酸菜发酵液中乳酸菌的动态改变。方法 采集传统天然发酵1~8周的酸菜发酵液50 mL,抽提基因组DNA,使用DGGE对乳酸菌菌群进行多样性、相似性研究和优势菌的鉴定,实时荧光定量PCR测定乳酸菌含量。结果 发酵周期加长,乳酸菌的含量随之也逐渐增大。清酒乳杆菌是酸菜自然发酵过程中的优势菌型,鼠李糖乳杆菌主要存在于发酵初期,发酵的中期(3~5周)、后期(6~8周)明显减少,同时发酵后期植物乳杆菌成为优势菌并完成全部发酵过程。发酵周期延长后,香农多样性指数和丰富度较高,出现先下降后上升的趋势,在第7周达到最大值。结论 在DNA水平上,DGGE和实时定量PCR检测了酸菜发酵液中乳酸菌的含量,进行菌群结构的动态分析,明确优势菌型,为实现酸菜标准化生产提供理论依据。 相似文献
17.
The citM gene from Lactococcus lactis CRL264 was demonstrated to encode for an oxaloacetate decarboxylase. The enzyme exhibits high levels of similarity to malic enzymes (MEs) from other organisms. CitM was expressed in Escherichia coli, purified and its oxaloacetate decarboxylase activity was demonstrated by biochemical and genetic studies. The highest oxaloacetate decarboxylation activity was found at low pH in the presence of manganese, and the Km value for oxaloacetate was 0.52 ± 0.03 mM. However, no malic activity was found for this enzyme. Our studies clearly show a new group of oxaloacetate decarboxylases associated with the citrate fermentation pathway in gram-positive bacteria. Furthermore, the essential catalytic residues were found to be conserved in all members of the ME family, suggesting a common mechanism for oxaloacetate decarboxylation. 相似文献
18.
The aim of this study was to investigate the effect of complex nutrients on microbial growth and bacteriocin production, in order to improve bacteriocin synthesis during the growth cycle of Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. The fermentations were conducted at the optimum pH and temperature for bacteriocin production (pH 5.5+/-0.1 and temperature 25+/-0.1 degrees C). Because of their association with the final biomass, conditions favouring the increase of the produced biomass resulted in the increase of bacteriocin activity in the growth medium. Since the produced final biomass and the final concentration of the bacteriocins were associated with the amount of the carbon (glucose) and nitrogen source, better growth of the lactic acid bacterial strains favoured the increase of the specific bacteriocin production. Additionally, the bacteriocin production was influenced by carbon/nitrogen ratio. 相似文献
19.
20.
Kanmani P Satish kumar R Yuvaraj N Paari KA Pattukumar V Arul V 《Bioresource technology》2011,102(7):4827-4833
Optimum culture conditions which ease the synthesis of a novel exopolysaccharide (EPS) from a potent marine strain Streptococcus phocae was proposed in this study. The strain grows well at 35 °C, pH 7.0 and NaCl (2%) with lactose and yeast extract as best carbon and nitrogen sources. The maximum yield of EPS (11.75 and 12.14 g/L) was obtained in the presence of lactose and yeast extract at a concentration of 20 g/L respectively. EPS was refined by gel filtration chromatography using phenyl Sepharose column which revealed the presence of arabinose, fructose and galactose sugar units with molecular mass about 2.8 × 105 Da. Emulsifying and flocculating stability of EPS compared with three commercial hydrocolloids. EPS exhibited better activities which are similar to that of commercial hydrocolloids. Both crude and purified EPS exhibited strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Antibiofilm activity by inhibition of Gram positive and Gram negative biofilm forming bacteria was evident in our studies. Potential antioxidant activity and biofilm inhibiting property of EPS may lead to the development of novel food grade adjuncts. 相似文献