首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosis mediates the uptake of extracellular proteins, micronutrients and transmembrane cell surface proteins. Importantly, many viruses, toxins and bacteria hijack endocytosis to infect cells. The canonical pathway is clathrin-mediated endocytosis (CME) and is active in all eukaryotic cells to support critical house-keeping functions. Unconventional mechanisms of endocytosis exit in parallel of CME, to internalize specific cargoes and support various cellular functions. These clathrin-independent endocytic (CIE) routes use three distinct mechanisms: acute signaling-induced membrane remodeling drives macropinocytosis, activity-dependent bulk endocytosis (ADBE), massive endocytosis (MEND) and EGFR non-clathrin endocytosis (EGFR-NCE). Cargo capture and local membrane deformation by cytosolic proteins is used by fast endophilin-mediated endocytosis (FEME), IL-2Rβ endocytosis and ultrafast endocytosis at synapses. Finally, the formation of endocytic pits by clustering of extracellular lipids or cargoes according to the Glycolipid-Lectin (GL-Lect) hypothesis mediates the uptake of SV40 virus, Shiga and cholera toxins, and galectin-clustered receptors by the CLIC/GEEC and the endophilin-A3-mediated CIE.  相似文献   

2.
Endocytosis is a fine-tuned mechanism of cellular communication through which cells internalize molecules on the plasma membrane, such as receptors and their bound ligands. Through receptor clustering in endocytic pits, recruitment of active receptors to different endocytic routes and their trafficking towards different fates, endocytosis modulates cell signaling and ultimately leads to a variety of biological responses. Many studies have focused their attention on specialized endocytic mechanisms depending on the nature of the internalizing cargo and cellular context, distinct sets of coat proteins, endocytic adaptors and membrane lipids. Here, we review recent advances in our understanding of the principles underlying endocytic vesicle formation, integrating both biochemical and biophysical factors, with a particular focus on intrinsically disordered regions (IDRs) creating weakly interconnected protein networks assembled through liquid–liquid phase separation (LLPS) and driving membrane bending especially in clathrin-mediated endocytosis (CME). We finally discuss how these properties impinge on receptor fate and signaling.  相似文献   

3.
Endocytosis is a well-conserved process by which cells invaginate small portions of the plasma membrane to create vesicles containing extracellular and transmembrane cargo proteins. Dozens of proteins and hundreds of specific binding interactions are needed to coordinate and regulate these events. Saccharomyces cerevisiae is a powerful model system with which to study clathrin-mediated endocytosis (CME). Pan1 is believed to be a scaffolding protein due to its interactions with numerous proteins that act throughout the endocytic process. Previous research characterized many Pan1 binding interactions, but due to Pan1''s essential nature, the exact mechanisms of Pan1''s function in endocytosis have been difficult to define. We created a novel Pan1-degron allele, Pan1-AID, in which Pan1 can be specifically and efficiently degraded in <1 h upon addition of the plant hormone auxin. The loss of Pan1 caused a delay in endocytic progression and weakened connections between the coat/actin machinery and the membrane, leading to arrest in CME. In addition, we determined a critical role for the central region of Pan1 in endocytosis and viability. The regions important for endocytosis and viability can be separated, suggesting that Pan1 may have a distinct role in the cell that is essential for viability.  相似文献   

4.
Immunotherapies are a promising strategy for the treatment of neurological diseases such as Alzheimer's disease (AD), however, transport of antibodies to the brain is severely restricted by the blood–brain barrier (BBB). Furthermore, molecular transport at the BBB is altered in disease, which may affect the mechanism and quantity of therapeutic antibody transport. To better understand the transport of immunotherapies at the BBB in disease, an in vitro BBB model derived from human induced pluripotent stem cells (iPSCs) was used to investigate the endocytic uptake route of immunoglobulin G (IgG). In this model, uptake of fluorescently labeled IgGs is a saturable process. Inhibition of clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis demonstrated that macropinocytosis is a major transport route for IgGs at the BBB. IgG uptake and transport were increased after the addition of stimuli to mimic AD (Aβ1–40 and Aβ1–42) and neuroinflammation (tumor necrosis factor-α and interleukin-6). Lastly, caveolar endocytosis increased in the AD model, which may be responsible for the increase in IgG uptake in disease. This study presents an iPSC-derived BBB model that responds to disease stimuli with physiologically relevant changes to molecular transport and can be used to understand fundamental questions about transport mechanisms of immunotherapies in health and neurodegenerative disease.  相似文献   

5.
In eukaryotic cells, several pathways exist for the internalization of plasma membrane proteins and extracellular cargo molecules. These endocytic pathways can be divided into clathrin-dependent and clathrin-independent pathways. While clathrin-dependent pathways are known to be involved in a variety of cellular processes in plants, clathrin-independent pathways have so far only been identified in animal and yeast cells. Here we show that internalization of fluorescent glucose into BY-2 cells leads to accumulation of the sugar in compartments of the endocytic pathway. This endocytic uptake of glucose was not blocked by ikarugamycin, an inhibitor of clathrin-dependent endocytosis, suggesting a role for clathrin-independent endocytosis in glucose uptake. Investigations of fusion and fission of single vesicles by membrane capacitance measurements revealed stimulation of endocytic activity by extracellular glucose. Glucose-stimulated fission of vesicles was not affected by addition of ikarugamycin or blocking of clathrin coat formation by transient over-expression of HUB1 (the C-terminal part of the clathrin heavy chain). These data demonstrate that clathrin-independent endocytosis does occur in plant cells. This pathway may represent a common mechanism for the uptake of external nutrients.  相似文献   

6.
Prions and Amyloid beta (Aβ) peptides induce synaptic damage via complex mechanisms that include the pathological alteration of intracellular signaling cascades. The host-encoded cellular prion protein (PrPC) acts as a high-affinity cell surface receptor for both toxic species and it can modulate the endocytic trafficking of the N-methyl D-aspartate (NMDA) receptor and E-cadherin adhesive complexes via Src family kinases (SFKs). Interestingly, SFK-mediated control of endocytosis is a widespread mechanism used to regulate the activity of important transmembrane proteins, including neuroreceptors for major excitatory and inhibitory neurotransmitters. Here we discuss our recent work in zebrafish and accumulating evidence suggesting that subversion of this pleiotropic regulatory mechanism by Aβ oligomers and prions explains diverse neurotransmission deficits observed in human patients and mouse models of prion and Alzheimer's neurodegeneration. While Aβ, PrPC and SFKs constitute potential therapeutic targets on their own, drug discovery efforts might benefit significantly from aiming at protein-protein interactions that modulate the endocytosis of specific SFK targets.  相似文献   

7.
Cell penetrating peptides (CPP) have been widely used to increase the cellular delivery of their associated cargo. Multiple modes of uptake have been identified; however, they cannot be predicted a priori. Elucidating these mechanisms is important for understanding peptide function as well as further optimizing cellular delivery. We have developed a class of mitogen activated protein kinase activated protein kinase 2 (MK2) inhibitor peptides, named FAK and YARA that utilize CPP domains to gain cellular access. In this study, we investigate the mechanism of endocytosis of these MK2 inhibitors by examining the uptake of fluorescently labeled peptide in human monocyte (THP‐1) and mesothelial cells, and looking for colocalization with known markers of endocytosis. Our results indicate that uptake of the MK2 inhibitors was minimally enhanced by the addition of the fluorescent label, and that the type of endocytosis used by the inhibitor depends on several factors including concentration, cell type, and which CPP was used. We found that in THP‐1 cells, the uptake of YARA occurred primarily via macropinocytosis, whereas FAK entered via all three mechanisms of endocytosis examined in this study. In mesothelial cells, uptake of YARA occurred via caveolae‐mediated endocytosis, but became less specific at higher concentrations; whereas uptake of FAK occurred through clathrin‐mediated endocytosis. In all cases, the delivery resulted in active inhibition of MK2. In summary, the results support endocytic uptake of fluorescently labeled FAK and YARA in two different cell lines, with the mechanism of uptake dependent on extracellular concentration, cell type, and choice of CPP. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Dual localization of proteins at the plasma membrane and within the nucleus has been reported in mammalian cells. Among these proteins are those involved in cell adhesion structures and in clathrin-mediated endocytosis. In the case of endocytic proteins, trafficking to the nucleus is not known to play a role in their endocytic function. Here, we show localization of the yeast endocytic adaptor protein Sla1p to the nucleus as well as to the cell cortex and we demonstrate the importance of specific regions of Sla1p for this nuclear localization. A role for specific karyopherins (importins and exportins) in Sla1p nuclear localization is revealed. Furthermore, endocytosis of Sla1p-dependent cargo is defective in three strains with karyopherin mutations. Finally, we investigate possible functions for nuclear trafficking of endocytic proteins. Our data reveal for the first time that nuclear transport of endocytic proteins is important for functional endocytosis in Saccharomyces cerevisiae. We determine the mechanism, involving an alpha/beta importin pair, that facilitates uptake of Sla1p and demonstrate that nuclear transport is required for the functioning of Sla1p during endocytosis.  相似文献   

9.
The plasma membrane represents an impermeable barrier for most macromolecules. Still some proteins and so-called cell-penetrating peptides enter cells efficiently. It has been shown that endocytosis contributes to the import of these molecules. However, conflicting results have been obtained concerning the nature of the endocytic process. In addition, there have been new findings for an endocytosis-independent cellular entry. In this study, we provide evidence that the Antennapedia-homeodomain-derived antennapedia (Antp) peptide, nona-arginine and the HIV-1 Tat-protein-derived Tat peptide simultaneously use three endocytic pathways: macropinocytosis, clathrin-mediated endocytosis and caveolae/lipid-raft-mediated endocytosis. Antennapedia differs from Tat and R9 by the extent by which the different import mechanisms contribute to uptake. Moreover, at higher concentrations, uptake occurs by a mechanism that originates from spatially restricted sites of the plasma membrane and leads to a rapid cytoplasmic distribution of the peptides. Endocytic vesicles could not be detected, suggesting an endocytosis-independent mode of uptake. Heparinase treatment of cells negatively affects this import, as does the protein kinase C inhibitor rottlerin, expression of dominant-negative dynamin and chlorpromazine. This mechanism of uptake was observed for a panel of different cell lines. For Antp, significantly higher peptide concentrations and inhibition of endocytosis were required to induce its uptake. The relevance of these findings for import of biologically active cargos is shown.  相似文献   

10.
Recent studies on the endocytic itinerary of glycosphingolipids (GSLs) in sphingolipid storage disease (SLSD) fibroblasts have yielded new insights into the mechanisms underlying the endocytosis and intracellular sorting of lipids in normal and disease cells. Here we highlight new data on clathrin-independent endocytosis of GSLs, the involvement of sphingolipid–cholesterol interactions in perturbation of endocytic trafficking, and potential roles for rab proteins in regulation of GSL transport in SLSDs.  相似文献   

11.
During neurotransmitter release, exocytosed neurotransmitter vesicles are recycled by endocytosis, which involves the assembly of a complex of endocytic proteins. Assembly of endocytic proteins into a functional complex depends on their dephosphorylation by calcineurin, a calcium-sensitive protein phosphatase and the inhibitory target of immunosuppressive drugs cyclosporin A and FK506. Cain is a recently identified protein inhibitor of calcineurin. We now provide evidence that cain is a component of the endocytic protein complex. The proline-rich region of cain forms a stable association with the SH3 domain of amphiphysin 1. Using a transferrin uptake assay, we found that overexpression of cain in HEK293 cells blocks endocytosis as potently as expression of a dominant negative dynamin 1 construct. The use of other calcineurin inhibitors such as cyclosporin A and FK506 also blocks endocytosis. Since binding of cain to amphiphysin 1 does not affect amphiphysin's interaction with other endocytic proteins, our results suggest that cain negatively regulates synaptic vesicle endocytosis by inhibiting calcineurin activity, rather than sterically interfering with the assembly of the endocytic protein complex.  相似文献   

12.
Amyloid-β (Aβ) is cleaved from amyloid precursor protein (APP) predominantly after APP has trafficked through the secretory pathway and then become re-internalised by endocytosis. Clathrin-mediated and, more recently, clathrin-independent endocytosis have both been implicated in this process. Furthermore, endocytic abnormalities have been identified in cases of Alzheimer’s disease (AD), however, the relevance of these changes to the aetiology of the disease remains unclear. We therefore examined the expression of proteins related to these endocytic processes in the cortex of Tg2576 mice that overexpress the Swedish mutation in APP, and consequently overexpress Aβ, to determine if there were any changes in their associated pathways. We identified significant increases in the levels of clathrin, dynamin and PICALM, all proteins intimately involved with the clathrin-mediated endocytic pathway, in the transgenic animals. However, levels of proteins associated with flotillin or caveolin-mediated endocytic pathways remained unchanged. These results emphasise the importance of clathrin-mediated endocytosis in the aetiology of AD and reinforce the results of the recent GWAS studies that identified genes for clathrin-mediated endocytosis as susceptibility genes for AD. Such studies in transgenic mice will allow us to learn more about the role of clathrin-mediated endocytosis in AD.  相似文献   

13.
Polyglutamine expansion in huntingtin is the underlying mutation leading to neurodegeneration in Huntington disease. This mutation influences the interaction of huntingtin with different proteins, including huntingtin-interacting protein 1 (HIP1), in which affinity to bind to mutant huntingtin is profoundly reduced. Here we demonstrate that HIP1 colocalizes with markers of clathrin-mediated endocytosis in neuronal cells and is highly enriched on clathrin-coated vesicles (CCVs) purified from brain homogenates. HIP1 binds to the clathrin adaptor protein 2 (AP2) and the terminal domain of the clathrin heavy chain, predominantly through a small fragment encompassing amino acids 276-335. This region, which contains consensus clathrin- and AP2-binding sites, functions in conjunction with the coiled-coil domain to target HIP1 to CCVs. Expression of various HIP1 fragments leads to a potent block of clathrin-mediated endocytosis. Our findings demonstrate that HIP1 is a novel component of the endocytic machinery.  相似文献   

14.
Endocytic membrane traffic controls the access of myriad cell surface proteins to the extracellular milieu, and thus gates nutrient uptake, ion homeostasis, signaling, adhesion and migration. Coordination of the regulation of endocytic membrane traffic with a cell's metabolic needs represents an important facet of maintenance of homeostasis under variable conditions of nutrient availability and metabolic demand. Many studies have revealed intimate regulation of endocytic membrane traffic by metabolic cues, from the specific control of certain receptors or transporters, to broader adaptation or remodeling of the endocytic membrane network. We examine how metabolic sensors such as AMP‐activated protein kinase, mechanistic target of rapamycin complex 1 and hypoxia inducible factor 1 determine sufficiency of various metabolites, and in turn modulate cellular functions that includes control of endocytic membrane traffic. We also examine how certain metabolites can directly control endocytic traffic proteins, such as the regulation of specific protein glycosylation by limiting levels of uridine diphosphate N‐acetylglucosamine (UDP‐GlcNAc) produced by the hexosamine biosynthetic pathway. From these ideas emerge a growing appreciation that endocytic membrane traffic is orchestrated by many intrinsic signals derived from cell metabolism, allowing alignment of the functions of cell surface proteins with cellular metabolic requirements. Endocytic membrane traffic determines how cells interact with their environment, thus defining many aspects of nutrient uptake and energy consumption. We examine how intrinsic signals that reflect metabolic status of a cell regulate endocytic traffic of specific proteins, and, in some cases, exert broad control of endocytic membrane traffic phenomena. Hence, endocytic traffic is versatile and adaptable and can be modulated to meet the changing metabolic requirements of a cell.  相似文献   

15.
The endocytic activity of epithelial cells from the rat epididymis in vitro has been examined by following the uptake of tracer compounds conjugated to proteins. Transferrin-gold and alpha 2-macroglobulin-gold were taken up initially in coated pits, internalized and sequestered into tubular-vesicular structures, multivesicular bodies and, in the case of alpha 2-macroglobulin, into lysosomes. Uptake could be prevented by an excess of unlabeled protein. Studies using 125I-alpha 2-macroglobulin and 125I-transferrin also showed that the uptake of these proteins was specific and could be displaced with increasing amounts of unlabeled protein. In addition, binding of 125I-transferrin to cells was saturable at 4 degrees C. These studies indicate that transferrin and alpha 2-macroglobulin are taken up by receptor-mediated endocytosis. In contrast, a fluid phase marker, bovine serum albumin-gold (BSA-gold), was initially taken up predominantly in uncoated caveolae rather than coated pits, and could not be displaced with excess BSA. By virtue of their charge, polycationized ferritin and unlabeled colloidal gold were taken up and internalized by adsorptive endocytosis, a pathway which is similar to fluid phase endocytosis. The uptake and internalization of alpha 2-macroglobulin and transferrin differed in a number of respects. Uptake and internalization of alpha 2-macroglobulin but not of transferrin was dependent on extracellular calcium. Only alpha 2-macroglobulin was transferred into lysosomes, whereas transferrin was recycled to the cell surface. Although the proton ionophore, monensin, and the transglutaminase inhibitor, dansylcadaverine, did not stop uptake and internalization of either alpha 2-macroglobulin or transferrin, they did prevent the transfer of alpha 2-macroglobulin to lysosomes.  相似文献   

16.
The low density lipoprotein receptor (LDLR) family is composed of a class of cell surface endocytic receptors that recognize extracellular ligands and internalize them for degradation by lysosomes. In addition to LDLR, mammalian members of this family include the LDLR-related protein (LRP), the very low density lipoprotein receptor (VLDLR), the apolipoprotein E receptor-2 (apoER2), and megalin. Herein we have analyzed the endocytic functions of the cytoplasmic tails of these receptors using LRP minireceptors, its chimeric receptor constructs, and full-length VLDLR and apoER2 stably expressed in LRP-null Chinese hamster ovary cells. We find that the initial endocytosis rates mediated by different cytoplasmic tails are significantly different, with half-times of ligand internalization ranging from less than 30 s to more than 8 min. The tail of LRP mediates the highest rate of endocytosis, whereas those of the VLDLR and apoER2 exhibit least endocytosis function. Compared with the tail of LRP, the tails of the LDLR and megalin display significantly lower levels of endocytosis rates. Ligand degradation analyses strongly support differential endocytosis rates initiated by these receptors. Interestingly apoER2, which has recently been shown to mediate intracellular signal transduction, exhibited the lowest level of ligand degradation efficiency. These results thus suggest that the endocytic functions of members of the LDLR family are distinct and that certain receptors in this family may play their main roles in areas other than receptor-mediated endocytosis.  相似文献   

17.
ABSTRACT: BACKGROUND: The intracellular deposition of misfolded proteins is a common neuropathological hallmark of most neurodegenerative disorders. Increasing evidence suggests that these pathogenic proteins may spread to neighboring cells and induce the propagation of neurodegeneration. RESULTS: In this study, we have demonstrated that alpha-synuclein (alphaSYN), a major constituent of intracellular inclusions in synucleinopathies, was taken up by neuronal and oligodendroglial cells in both a time- and concentration-dependent manner. Once incorporated, the extracellular alphaSYN was immediately assembled into high-molecular-weight oligomers and subsequently formed cytoplasmic inclusion bodies. Furthermore, alphaSYN uptake by neurons and cells of the oligodendroglial lineage was markedly decreased by the genetic suppression and pharmacological inhibition of the dynamin GTPases, suggesting the involvement of the endocytic pathway in this process. CONCLUSIONS: Our findings shed light on the mode of alphaSYN uptake by neuronal and oligodendroglial cells and identify therapeutic strategies aimed at reducing the propagation of protein misfolding.  相似文献   

18.
Animal cells internalize specific extracellular macromolecules (ligands) by using specialized cell surface receptors that operate through a complex and highly regulated process known as receptor-mediated endocytosis, which involves the binding, internalization, and transfer of ligands through a series of distinct intracellular compartments. For the uptake of a variety of carbohydrate-containing macromolecules, such as glycoproteins, animal cells use specialized membrane-bound lectins as endocytic receptors that recognize different sugar residues or carbohydrate structures present on various ligands. The hepatic asialoglycoprotein receptor, which recognizes glycoconjugates containing terminal galactose or N-acetylgalactosamine residues, was the first membrane lectin discovered and has been a classical system for studying receptor-mediated endocytosis. Studies of how the asialoglycoprotein receptor functions have led to the discovery of two functionally distinct, parallel pathways of clathrin-mediated endocytosis (called the State 1 and State 2 pathways), which may also be utilized by all the other endocytic recycling receptor systems. Another endocytic membrane lectin, the hyaluronan/chondroitin sulfate receptor, which has recently been purified and cloned, is responsible for the turnover in mammals of these glycosaminoglycans, which are important components of extracellular matrices. We discuss the characteristics and physiological importance of these two proteins as examples of how lectins can function as endocytic receptors.  相似文献   

19.
Helicobacter pylori vacuolating toxin (VacA) causes vacuolation in a variety of cultured cell lines, sensitivity to VacA differing greatly, however, among the different cell types. We found that the high sensitivity of HEp-2 cells to VacA was impaired by treating the cells with phosphatidylinositol-specific phospholipase C (PI-PLC) which removes glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface. Incubation of cells with a cholesterol-sequestering agent, that impairs both structure and function of sphingolipid-cholesterol-rich membrane microdomains ("lipid rafts"), also impaired VacA-induced cell vacuolation. Overexpression into HEp-2 cells of proteins inhibiting clathrin-dependent endocytosis (i.e., a dominant-negative mutant of Eps15, the five tandem Src-homology-3 domains of intersectin, and the K44A dominant-negative mutant of dynamin II) did not affect vacuolation induced by VacA. Nevertheless, F-actin depolymerization, known to block the different types of endocytic mechanisms, strongly impaired VacA vacuolating activity. Taken together, our data suggest that the high cell sensitivity to VacA depends on the presence of one or several GPI-anchored protein(s), intact membrane lipid rafts, and an uptake mechanism via a clathrin-independent endocytic pathway.  相似文献   

20.
Copper uptake and subsequent delivery to copper-dependent enzymes are essential for many cellular processes. However, the intracellular levels of this nutrient must be controlled because of its potential toxicity. The hCtr1 protein functions in high affinity copper uptake at the plasma membrane of human cells. Recent studies have shown that elevated copper stimulates the endocytosis and degradation of the hCtr1 protein, and this response is likely an important homeostatic mechanism that prevents the overaccumulation of copper. The domains of hCtr1 involved in copper-stimulated endocytosis and degradation are unknown. In this study we examined the importance of potential copper-binding sequences in the extracellular domain and a conserved transmembrane (150)MXXXM(154) motif for copper-stimulated endocytosis and degradation of hCtr1. The endocytic response of hCtr1 to low copper concentrations required an amino-terminal methionine cluster ((40)MMMMPM(45)) closest to the transmembrane region. However, this cluster was not required for the endocytic response to higher copper levels, suggesting this motif may function as a high affinity copper-sensing domain. Moreover, the transmembrane (150)MXXXM(154) motif was absolutely required for copper-stimulated endocytosis and degradation of hCtr1 even under high copper concentrations. Together with previous studies demonstrating a role for these motifs in high affinity copper transport activity, our findings suggest common biochemical mechanisms regulate both transport and trafficking functions of hCtr1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号