首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otte S  Barlowe C 《Nature cell biology》2004,6(12):1189-1194
Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-alpha-factor (gpalphaf), the precursor of alpha-factor mating pheromone. Here we identify a hydrophobic signal within the pro-region of gpalphaf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.  相似文献   

2.
Active sorting at the endoplasmic reticulum (ER) drives efficient export of fully folded secretory proteins into coat protein complex II (COPII) vesicles, whereas ER-resident and misfolded proteins are retained and/or degraded. A number of secretory proteins depend upon polytopic cargo receptors for linkage to the COPII coat and ER export. However, the mechanism by which cargo receptors recognize transport-competent cargo is poorly understood. Here we examine the sorting determinants required for export of yeast alkaline phosphatase (ALP) by its cargo receptor Erv26p. Analyses of ALP chimeras and mutants indicated that Erv26p recognizes sorting information in the lumenal domain of ALP. This lumenal domain sorting signal must be positioned near the inner leaflet of the ER membrane for Erv26p-dependent export. Moreover, only assembled ALP dimers were efficiently recognized by Erv26p while an ALP mutant blocked in dimer assembly failed to exit the ER and was subjected to ER-associated degradation. These results further refine sorting information for ER export of ALP and show that recognition of folded cargo by export receptors contributes to strict ER quality control.  相似文献   

3.
Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.  相似文献   

4.
Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.  相似文献   

5.
COPII-coated ER-derived transport vesicles from Saccharomyces cerevisiae contain a distinct set of membrane-bound polypeptides. One of these polypeptides, termed Erv14p (ER–vesicle protein of 14 kD), corresponds to an open reading frame on yeast chromosome VII that is predicted to encode an integral membrane protein and shares sequence identity with the Drosophila cornichon gene product. Experiments with an epitope-tagged version of Erv14p indicate that this protein localizes to the ER and is selectively packaged into COPII-coated vesicles. Haploid cells that lack Erv14p are viable but display a modest defect in bud site selection because a transmembrane secretory protein, Axl2p, is not efficiently delivered to the cell surface. Axl2p is required for selection of axial growth sites and normally localizes to nascent bud tips or the mother bud neck. In erv14Δ strains, Axl2p accumulates in the ER while other secretory proteins are transported at wild-type rates. We propose that Erv14p is required for the export of specific secretory cargo from the ER. The polarity defect of erv14Δ yeast cells is reminiscent of cornichon mutants, in which egg chambers fail to establish proper asymmetry during early stages of oogenesis. These results suggest an unforeseen conservation in mechanisms producing cell polarity shared between yeast and Drosophila.  相似文献   

6.
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.  相似文献   

7.
Rapidly cycling proteins of the early secretory pathway can operate as cargo receptors. Known cargo receptors are abundant proteins, but it remains mysterious why their inactivation leads to rather limited secretion phenotypes. Studies of Surf4, the human orthologue of the yeast cargo receptor Erv29p, now reveal a novel function of cargo receptors. Surf4 was found to interact with endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53 and p24 proteins. Silencing Surf4 together with ERGIC-53 or silencing the p24 family member p25 induced an identical phenotype characterized by a reduced number of ERGIC clusters and fragmentation of the Golgi apparatus without effect on anterograde transport. Live imaging showed decreased stability of ERGIC clusters after knockdown of p25. Silencing of Surf4/ERGIC-53 or p25 resulted in partial redistribution of coat protein (COP) I but not Golgi matrix proteins to the cytosol and partial resistance of the cis-Golgi to brefeldin A. These findings imply that cargo receptors are essential for maintaining the architecture of ERGIC and Golgi by controlling COP I recruitment.  相似文献   

8.
Efficient export of secretory alkaline phosphatase (ALP) from the endoplasmic reticulum depends on the conserved transmembrane sorting adaptor Erv26p/Svp26p. In the present study we investigated the mechanism by which Erv26p couples pro-ALP to the coat protein complex II (COPII) export machinery. Site-specific mutations were introduced into Erv26p, and mutant proteins were assessed in cell-free assays that monitor interactions with pro-ALP cargo and packaging into COPII vesicles. Mutations in the second and third loop domains of Erv26p inhibited interaction with pro-ALP, whereas mutations in the C-terminal tail sequence influenced incorporation into COPII vesicles and subcellular distribution. Interestingly mutations in the second loop domain also influenced Erv26p homodimer associations. Finally we demonstrated that Ktr3p, a cis-Golgi-localized mannosyltransferase, also relies on Erv26p for efficient COPII-dependent export from the endoplasmic reticulum. These findings demonstrate that Erv26p acts as a protein sorting adaptor for a variety of Type II transmembrane cargo proteins and requires domain-specific interactions with both cargo and coat subunits to promote efficient secretory protein transport.Anterograde transport in the eukaryotic secretory pathway is initiated by the formation of COPII2-coated vesicles that emerge from transitional ER sites. The COPII coat, which consists of the small GTPase Sar1p, Sec23/24 complex, and Sec13/31 complex, selects vesicle cargo through recognition of export signals and forms ER-derived vesicles through assembly of an outer layer cage structure (1, 2). Cytoplasmically exposed ER export signals have been identified in secretory cargo including the C-terminal dihydrophic and diacidic motifs (3, 4). Structural studies indicate that the Sec24p subunit of the COPII coat contains distinct binding sites for some of the molecularly defined export signals (5, 6). Thus a cycle of cargo-coat interactions regulated by the Sar1p GTPase directs anterograde movement of secretory proteins into ER-derived transport vesicles (7).Although many secretory proteins contain known export signals that interact directly with COPII subunits, the diverse array of secretory cargo that depends on this export route requires additional machinery for efficient collection of all cargo into COPII vesicles (1). For instance certain soluble secretory proteins as well as transmembrane cargo require protein sorting adaptors for efficient ER export. These membrane-spanning adaptors, or sorting receptors, interact directly with secretory cargo and with coat subunits to efficiently couple cargo to the COPII budding machinery. For example, ERGIC-53 acts as a protein sorting adaptor for several glycoproteins and has a large N-terminal lumenal domain that interacts with secretory proteins including blood coagulation factors, cathepsins, and α1-antitrypsin (810). The cytoplasmic C-terminal tail of ERGIC-53 contains a diphenylalanine export signal that is necessary for COPII export as well as a dilysine motif required for COPI-dependent retrieval to the ER (11). Additional ER vesicle proteins identified in yeast have been shown to interact with the COPII coat as well as specific secretory proteins (12). For example Erv29p acts as a protein sorting adaptor for the soluble secretory proteins glyco-pro-α-factor and carboxypeptidase Y (13). Erv29p also contains COPII and COPI sorting signals that shuttle the protein between ER and Golgi compartments. More recently Erv26p was identified as a cargo receptor that escorts the pro-form of secretory alkaline phosphatase (ALP) into COPII-coated vesicles (14).Although COPII sorting receptors have been identified, the molecular mechanisms by which these receptors link cargo to coat remain poorly understood. Moreover it is not clear how cargo binding is regulated to promote interaction in the ER and then trigger dissociation in the Golgi complex. We have shown previously that Erv26p binds to pro-ALP and is required for efficient export of this secretory protein from the ER (14). Therefore specific lumenal regions of Erv26p are proposed to interact with pro-ALP, whereas cytosolically exposed sorting signals are presumably recognized and bound by coat subunits. To gain insight on the molecular contacts required for Erv26p sorting function, we undertook a systematic mutational analysis of this multispanning membrane protein. After generating a series of Erv26p mutants, we observed that mutation of specific residues in the third loop domain affect pro-ALP interaction and that residues in the C-terminal cytosolic tail are required for COPII and COPI transport. Finally mutation of residues in the second loop domain influenced Erv26p homodimer formation and sorting activity.  相似文献   

9.
Secretory proteins are exported from the endoplasmic reticulum (ER) by bulk flow and/or receptor-mediated transport. Our understanding of this process is limited because of the low number of identified transport receptors and cognate cargo proteins. In mammalian cells, the lectin ER Golgi intermediate compartment 53-kD protein (ERGIC-53) represents the best characterized cargo receptor. It assists ER export of a subset of glycoproteins including coagulation factors V and VIII and cathepsin C and Z. Here, we report a novel screening strategy to identify protein interactions in the lumen of the secretory pathway using a yellow fluorescent protein-based protein fragment complementation assay. By screening a human liver complementary DNA library, we identify alpha1-antitrypsin (alpha1-AT) as previously unrecognized cargo of ERGIC-53 and show that cargo capture is carbohydrate- and conformation-dependent. ERGIC-53 knockdown and knockout cells display a specific secretion defect of alpha1-AT that is corrected by reintroducing ERGIC-53. The results reveal ERGIC-53 to be an intracellular transport receptor of alpha1-AT and provide direct evidence for active receptor-mediated ER export of a soluble secretory protein in higher eukaryotes.  相似文献   

10.
Drosophila Cornichon (Cni) is the founding member of a conserved protein family that also includes Erv14p, an integral component of the COPII-coated vesicles that mediate cargo export from the yeast endoplasmic reticulum (ER). During Drosophila oogenesis, Cni is required for transport of the TGFalpha growth factor Gurken (Grk) to the oocyte surface. Here, we show that Cni, but not the second Drosophila Cni homologue Cni-related (Cnir), binds to the extracellular domain of Grk, and propose that Cni acts as a cargo receptor recruiting Grk into COPII vesicles. Consequently, in the absence of Cni function, Grk fails to leave the oocyte ER. Proteolytic processing of Grk still occurs in cni mutant ovaries, demonstrating that release of the active growth factor from its transmembrane precursor occurs earlier during secretory transport than described for the other Drosophila TGFalpha homologues. Massive overexpression of Grk in a cni mutant background can overcome the requirement of Grk signalling for cni activity, confirming that cni is not essential for the production of the functional Grk ligand. However, the rescued egg chambers lack dorsoventral polarity. This demonstrates that the generation of temporally and spatially precisely coordinated Grk signals cannot be achieved by bulk flow secretion, but instead has to rely on fast and efficient ER export through cargo receptor-mediated recruitment of Grk into the secretory pathway.  相似文献   

11.
The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term "PAIRS" (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ~150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.  相似文献   

12.
The mammalian B-cell receptor-associated proteins of 29 and 31 kDa (BAP29 and BAP31) are conserved integral membrane proteins that have reported roles in endoplasmic reticulum (ER) quality control, ER export of secretory cargo, and programmed cell death. In this study we investigated the yeast homologs of BAP29 and BAP31, known as Yet1p and Yet3p, to gain insight on cellular function. We found that Yet1p forms a complex with Yet3p (Yet complex) and that complex assembly was important for subunit stability and proper ER localization. The Yet complex was not efficiently packaged into ER-derived COPII vesicles and therefore does not appear to act as an ER export receptor. Instead, a fraction of the Yet complex was detected in association with the ER translocation apparatus (Sec complex). Specific mutations in the Sec complex or Yet complex influenced these interactions. Moreover, associations between the Yet complex and Sec complex were increased by ER stress and diminished when protein translocation substrates were depleted. Surprisingly, yet1Δ and yet3Δ mutant strains displayed inositol starvation-related growth defects. In accord with the biochemical data, these growth defects were exacerbated by a combination of certain mutations in the Sec complex with yet1Δ or yet3Δ mutations. We propose a model for the Yet-Sec complex interaction that places Yet1p and Yet3p at the translocation pore to manage biogenesis of specific transmembrane secretory proteins.  相似文献   

13.
Filamentous fungi are native secretors of lignocellulolytic enzymes and are used as protein‐producing factories in the industrial biotechnology sector. Despite the importance of these organisms in industry, relatively little is known about the filamentous fungal secretory pathway or how it might be manipulated for improved protein production. Here, we use Neurospora crassa as a model filamentous fungus to interrogate the requirements for trafficking of cellulase enzymes from the endoplasmic reticulum to the Golgi. We characterized the localization and interaction properties of the p24 and ERV‐29 cargo adaptors, as well as their role in cellulase enzyme trafficking. We find that the two most abundantly secreted cellulases, CBH‐1 and CBH‐2, depend on distinct ER cargo adaptors for efficient exit from the ER. CBH‐1 depends on the p24 proteins, whereas CBH‐2 depends on the N. crassa homolog of yeast Erv29p. This study provides a first step in characterizing distinct trafficking pathways of lignocellulolytic enzymes in filamentous fungi.  相似文献   

14.
Signal-dependent sorting of proteins in the early secretory pathway is required for dynamic retention of endoplasmic reticulum (ER) and Golgi components. In this study, we identify the Erv41–Erv46 complex as a new retrograde receptor for retrieval of non–HDEL-bearing ER resident proteins. In cells lacking Erv41–Erv46 function, the ER enzyme glucosidase I (Gls1) was mislocalized and degraded in the vacuole. Biochemical experiments demonstrated that the luminal domain of Gls1 bound to the Erv41–Erv46 complex in a pH-dependent manner. Moreover, in vivo disturbance of the pH gradient across membranes by bafilomycin A1 treatment caused Gls1 mislocalization. Whole cell proteomic analyses of deletion strains using stable isotope labeling by amino acids in culture identified other ER resident proteins that depended on the Erv41–Erv46 complex for efficient localization. Our results support a model in which pH-dependent receptor binding of specific cargo by the Erv41–Erv46 complex in Golgi compartments identifies escaped ER resident proteins for retrieval to the ER in coat protein complex I–formed transport carriers.  相似文献   

15.
Cycling proteins play important roles in the organization and function of the early secretory pathway by participating in membrane traffic and selective transport of cargo between the endoplasmic reticulum (ER), the intermediate compartment (ERGIC), and the Golgi. To identify new cycling proteins, we have developed a novel procedure for the purification of ERGIC membranes from HepG2 cells treated with brefeldin A, a drug known to accumulate cycling proteins in the ERGIC. Membranes enriched 110-fold over the homogenate for ERGIC-53 were obtained and analyzed by mass spectrometry. Major proteins corresponded to established and putative cargo receptors and components mediating protein maturation and membrane traffic. Among the uncharacterized proteins, a 32-kDa protein termed ERGIC-32 is a novel cycling membrane protein with sequence homology to Erv41p and Erv46p, two proteins enriched in COPII vesicles of yeast. ERGIC-32 localizes to the ERGIC and partially colocalizes with the human homologs of Erv41p and Erv46p, which mainly localize to the cis-Golgi. ERGIC-32 interacts with human Erv46 (hErv46) as revealed by covalent cross-linking and mistargeting experiments, and silencing of ERGIC-32 by small interfering RNAs increases the turnover of hErv46. We propose that ERGIC-32 functions as a modulator of the hErv41-hErv46 complex by stabilizing hErv46. Our novel approach for the isolation of the ERGIC from BFA-treated cells may ultimately lead to the identification of all proteins rapidly cycling early in the secretory pathway.  相似文献   

16.
Cargo receptors in the endoplasmic reticulum (ER) recognize and help membrane and soluble proteins along the secretory pathway to reach their location and functional site. We characterized physiological properties of Saccharomyces cerevisiae strains lacking the ERV14 gene, which encodes a cargo receptor part of COPII-coated vesicles that cycles between the ER and Golgi membranes. The lack of Erv14 resulted in larger cell volume, plasma-membrane hyperpolarization, and intracellular pH decrease. Cells lacking ERV14 exhibited increased sensitivity to toxic cationic drugs and decreased ability to grow on low K+. We found no change in the localization of plasma membrane H+-ATPase Pma1, Na+, K+-ATPase Ena1 and K+ importer Trk2 or vacuolar K+-Cl co-transporter Vhc1 in the absence of Erv14. However, Erv14 influenced the targeting of two K+-specific plasma-membrane transport systems, Tok1 (K+ channel) and Trk1 (K+ importer), that were retained in the ER in erv14Δ cells. The lack of Erv14 resulted in growth phenotypes related to a diminished amount of Trk1 and Tok1 proteins. We confirmed that Rb+ whole-cell uptake via Trk1 is not efficient in cells lacking Erv14. ScErv14 helped to target Trk1 homologues from other yeast species to the S. cerevisiae plasma membrane. The direct interaction between Erv14 and Tok1 or Trk1 was confirmed by co-immunoprecipitation and by a mating-based Split Ubiquitin System. In summary, our results identify Tok1 and Trk1 to be new cargoes for Erv14 and show this receptor to be an important player participating in the maintenance of several physiological parameters of yeast cells.  相似文献   

17.
Abstract

Trafficking of newly synthesized cargo through the early secretory pathway defines and maintains the intracellular organization of eukaryotic cells as well as the organization of tissues and organs. The importance of this pathway is underlined by the increasing number of mutations in key components of the ER export machinery that are causative of a diversity of human diseases. Here we discuss the molecular mechanisms that dictate cargo selection during vesicle budding. While, in vitro reconstitution assays, unicellular organisms such as budding yeast, and mammalian cell culture still have much to offer in terms of gaining a full understanding of the molecular basis for secretory cargo export, such assays have to date been limited to analysis of smaller, freely diffusible cargoes. The export of large macromolecular complexes from the ER such as collagens (up to 300 nm) or lipoproteins (~500 nm) presents a clear problem in terms of maintaining both selectivity and efficiency of export. It has also become clear that in order to translate our knowledge of the molecular basis for ER export to a full understanding of the implications for normal development and disease progression, the use of metazoan models is essential. Combined, these approaches are now starting to shed light not only on the mechanisms of macromolecular cargo export from the ER but also reveal the implications of failure of this process to human development and disease.  相似文献   

18.
Trafficking of newly synthesized cargo through the early secretory pathway defines and maintains the intracellular organization of eukaryotic cells as well as the organization of tissues and organs. The importance of this pathway is underlined by the increasing number of mutations in key components of the ER export machinery that are causative of a diversity of human diseases. Here we discuss the molecular mechanisms that dictate cargo selection during vesicle budding. While, in vitro reconstitution assays, unicellular organisms such as budding yeast, and mammalian cell culture still have much to offer in terms of gaining a full understanding of the molecular basis for secretory cargo export, such assays have to date been limited to analysis of smaller, freely diffusible cargoes. The export of large macromolecular complexes from the ER such as collagens (up to 300 nm) or lipoproteins (~500 nm) presents a clear problem in terms of maintaining both selectivity and efficiency of export. It has also become clear that in order to translate our knowledge of the molecular basis for ER export to a full understanding of the implications for normal development and disease progression, the use of metazoan models is essential. Combined, these approaches are now starting to shed light not only on the mechanisms of macromolecular cargo export from the ER but also reveal the implications of failure of this process to human development and disease.  相似文献   

19.
Endoplasmic reticulum (ER) quality control (ERQC) components retain and degrade misfolded proteins, and our results have found that the degradation of the soluble ERQC substrates CPY* and PrA* but not membrane spanning ERQC substrates requires transport between the ER and Golgi. Stabilization of these misfolded soluble proteins was seen in cells lacking Erv29p, a probable Golgi localized protein that cycles through the ER by means of a di-lysine ER retrieval motif (KKKIY). Cells lacking Erv29p also displayed severely retarded ER exit kinetics for a subset of correctly folded proteins. We suggest that Erv29p is likely involved in cargo loading of a subset of proteins, including soluble misfolded proteins, into vesicles for ER exit. The stabilization of soluble ERQC substrates in both erv29Delta cells and sec mutants blocked in either ER exit (sec12) or vesicle delivery to the Golgi (sec18) suggests that ER-Golgi transport is required for ERQC and reveals a new aspect of the degradative mechanism.  相似文献   

20.
Knockdown of the actin-severing protein actin-depolymerizing factor (ADF)/cofilin inhibited export of an exogenously expressed soluble secretory protein from Golgi membranes in Drosophila melanogaster and mammalian tissue culture cells. A stable isotope labeling by amino acids in cell culture mass spectrometry–based protein profiling revealed that a large number of endogenous secretory proteins in mammalian cells were not secreted upon ADF/cofilin knockdown. Although many secretory proteins were retained, a Golgi-resident protein and a lysosomal hydrolase were aberrantly secreted upon ADF/cofilin knockdown. Overall, our findings indicate that inactivation of ADF/cofilin perturbed the sorting of a subset of both soluble and integral membrane proteins at the trans-Golgi network (TGN). We suggest that ADF/cofilin-dependent actin trimming generates a sorting domain at the TGN, which filters secretory cargo for export, and that uncontrolled growth of this domain causes missorting of proteins. This type of actin-dependent compartmentalization and filtering of secretory cargo at the TGN by ADF/cofilin could explain sorting of proteins that are destined to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号