首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Process Biochemistry》2007,42(5):873-877
The present work reports the effect of simple feeding strategies to obtain high-cell-density cultures of Kluyveromyces marxianus maximizing β-galactosidase productivity using cheese whey as basic medium. Linear and exponential feeding strategies, with feeding times of 20, 25 and 35 h, and three different feeding media concentrations (140 g/L, 210 g/L, and 280 g/L lactose concentration), were tested. Final biomass concentration reached 35 g cells dry weight/L and our results showed that continuous lactose addition to culture were able to produce high specific enzyme activities, consequently improving volumetric activities of β-galactosidase when compared to batch cultivations. The best fed-batch strategy, which was the feeding of three-fold lactose concentration in the cheese whey-medium during 25 h, resulted in β-galactosidase productivity of 291 U/L h, representing an increase of more than 50% compared to batch cultivations.  相似文献   

3.
4.
5.
Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP+-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.  相似文献   

6.
In this work Escherichia coli strain CML3-1 was engineered through the insertion of Cupriavidus necator P(3HB)-synthesis genes, fused to a lactose-inducible promoter, into the chromosome, via transposition-mediated mechanism. It was shown that polyhydroxyalkanotes (PHAs) production by this strain, using cheese whey, was low due to a significant organic acids (OA) synthesis. The proton suicide method was used as a strategy to obtain an E. coli mutant strain with a reduced OA-producing capacity, aiming at driving bacterial metabolism toward PHAs synthesis.Thirteen E. coli mutant strains were obtained and tested in shake flask assays, using either rich or defined media supplemented with lactose. P8-X8 was selected as the best candidate strain for bioreactor fed-batch tests using cheese whey as the sole carbon source. Although cell growth was considerably slower for this mutant strain, a lower yield of OA on substrate (0.04 CmolOA/Cmollac) and a higher P(3HB) production (18.88 gP(3HB)/L) were achieved, comparing to the original recombinant strain (0.11 CmolOA/Cmollac and 7.8 gP(3HB)/L, respectively). This methodology showed to be effective on the reduction of OA yield by consequently improving the P(3HB) yield on lactose (0.28 CmolP(3HB)/Cmollac vs 0.10 CmolP(3HB)/Cmollac of the original strain).  相似文献   

7.
A β-galactosidase gene (designated PaGalA) was cloned for the first time from Paecilomyces aerugineus and expressed in Pichia pastoris under the control of the AOX1 promoter. The coding region of 3036 bp encoded a protein of 1011 amino acids with a deduced molecular mass of 108.7 kDa. The PaGalA without the signal peptide was cloned into a vector pPIC9K and was expressed successfully in P. pastoris as active extracellular β-galactosidase. The recombinant β-galactosidase (PaGalA) was secreted into the medium at an extremely high levels of 22 mg ml−1 having an activity of 9500 U ml−1 from high density fermentation culture, which is by far the highest yield obtained for a β-galactosidase. The purified enzyme with a high specific activity of 820 U mg−1 had a molecular mass of 120 kDa on SDS-PAGE. PaGalA was optimally active at pH 4.5 and a temperature of 60 °C. The recombinant β-galactosidase was able to hydrolyze lactose efficiently at pH 5.0 and 50 °C. It also possessed transglycosylation activities at high concentrations of lactose. PaGalA exhibited better lactose hydrolysis efficiency in whey than two other widely used commercial lactases. The extremely high expression levels coupled with favorable biochemical properties make this enzyme highly suitable for commercial purposes in the hydrolysis of lactose in milk or whey.  相似文献   

8.
9.
Thermobifida fusca not only produces cellulases, hemicellulases and xylanases, but also excretes butyric acid. In order to achieve a high yield of butyric acid, the effect of different carbon sources: mannose, xylose, lactose, cellobiose, glucose, sucrose and acetates, on butyric acid production was studied. The highest yield of butyric acid was 0.67 g/g C (g-butyric acid/g-carbon input) on cellobiose. The best stir speed and aeration rate for butyric acid production were found to be 400 rpm and 2 vvm in a 5-L fermentor. The maximum titer of 2.1 g/L butyric acid was achieved on 9.66 g/L cellulose. In order to test the production of butyric acid on lignocellulosic biomass, corn stover was used as the substrate, on which there was 2.37 g/L butyric acid produced under the optimized conditions. In addition, butyric acid synthesis pathway was identified involving five genes that catalyzed reactions from acetyl-CoA to butanoyl-CoA in T. fusca.  相似文献   

10.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

11.
In this work, the hydrolysis kinetics of lactose by Aspergillus oryzae β-galactosidase was studied using the ionic exchange resin Duolite A568 as a carrier. The enzyme was immobilized using a β-galactosidase concentration of 16 g/L in pH 4.5 acetate buffer and an immobilization time of 12 h at 25 ± 0.5 °C. Next, the immobilized β-galactosidase was crosslinked using glutaraldehyde concentration of 3.5 g/L for 1.5 h. The influence of lactose concentration was studied for a range of 5–140 g/L, and the Michaelis–Menten model was fitted well to the experimental results with Vm and Km values of 0.71 U and 35.30 mM, respectively. The influence of the product galactose as an inhibitor on the hydrolysis reaction was studied. The model that was best fitted to the experimental results was the competitive inhibition by galactose with Vm, Km and Ki values of 0.77 U, 35.30 mM and 27.44 mM, respectively. The influence of temperature on the enzymatic activity of the immobilized enzyme was studied in the range of 10–80 °C, in which the temperature of the maximum activity was 60 °C, with an activation energy of 5.32 kcal/mol of lactose, using an initial concentration of lactose of 50 g/L in a pH 4.5 sodium acetate buffer solution. The thermal stability of the immobilized biocatalyst was determined to be in the range 55–65 °C. The first-order model described well the kinetics of thermal deactivation for all the temperatures studied. The activation energy of thermal deactivation from immobilized biocatalyst was 66.48 kcal/mol with a half-life of 8.9 h at 55 °C.  相似文献   

12.
A performance study and a nitrogen balance study (2×3 factorial) were conducted to investigate the interaction between lactose level (215 and 125 g/kg) (lactofeed 70; 860 g whey permeate/kg, 140 g soya bean meal/kg, Volac International, UK) and crude protein (CP) concentration (160, 185 and 210 g/kg) on post-weaning piglet performance, nitrogen metabolism, faecal microbiology and faecal volatile fatty acid concentrations. In the performance trial, 252 piglets (7.6 kg; 33 days of age) were assigned to one of six dietary treatments following a 12-day period on a commercial creep diet (17 MJ/kg DE, 16 g lysine/kg). The experimental diets were fed for 28 days (days 12–40) and were formulated to have identical digestible energy (15 MJ/kg) and total lysine (14.5 g/kg) contents. In the N balance experiment, 24 boars (20 kg live weight) were offered the same diets as in the performance trial. Faecal samples were collected for selected microbial populations. There was an interaction (P<0.05) between lactose and CP concentration in daily gain (ADG) and daily feed intake (ADFI) (P<0.01) during the weaner period (days 12–40). At the high lactose level there was a linear increase in ADG and ADFI with increasing CP. However, at the low lactose level there was no increase in ADG or ADFI above the medium CP. Pigs offered 215 g lactose/kg had a higher dry matter (P<0.001), organic matter (P<0.001), energy (P<0.001), nitrogen (P<0.01) and neutral detergent fibre (P<0.05) coefficient of total tract apparent digestibility compared to pigs offered 125 g lactose/kg. There was an interaction between lactose and CP concentration for nitrogen intake (NI) (P<0.05), urine pH (P<0.05) and selected faecal microbial populations. At the high CP level, pigs offered diets containing 215 g lactose/kg had a higher NI and a lower urine pH than pigs offered 125 g lactose/kg (P<0.05). However, the inclusion of lactose had no significant effect on either NI or urine pH at the low or medium CP concentration. At the low lactose level there was a linear increase in faecal E. coli population and a linear decrease in faecal Lactobacilli population with increasing CP. However at high lactose levels CP concentration had no effect on either E. coli or Lactobacilli populations. Pigs offered 215 g lactose/kg had a significantly higher Bifidobacteria population compared to pigs offered 125 g lactose/kg. There was a linear decrease in Bifidobacteria population as CP increased. In conclusion, at the high lactose level there was a linear increase in ADG and ADFI with increasing CP concentrations. There was no increase in these parameters above 185 g CP/kg at the low lactose level.  相似文献   

13.
14.
Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP+ for acetyl-CoA production. After 24 h of cultivation, a 3.7-fold increase in NADPH/NADP+ ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48 h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2–3-fold over the base strain (up to 0.8 g/L), and in combination to 1.4 g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6 g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16 g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds.  相似文献   

15.
Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production. The results also showed that, even though some lactic acid fermentation had taken place prior to ethanol fermentation, K. marxianus was able to take over and produce ethanol from the remaining lactose, since a significant amount of lactic acid was not produced (1–2 g/l). Batch fermentations showed high ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5–4.5 g/l/h) was achieved at dilution rate of 0.2/h, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey.  相似文献   

16.
The development of lignocellulose as a sustainable resource for the production of fuels and chemicals will rely on technology capable of converting the raw materials into useful compounds; some such transformations can be achieved by biological processes employing engineered microorganisms. Towards the goal of valorizing the hemicellulose fraction of lignocellulose, we designed and validated a set of pathways that enable efficient utilization of pentoses for the biosynthesis of notable two-carbon products. These pathways were incorporated into Escherichia coli, and engineered strains produced ethylene glycol from various pentoses, including simultaneously from D-xylose and L-arabinose; one strain achieved the greatest reported titer of ethylene glycol, 40 g/L, from D-xylose at a yield of 0.35 g/g. The strategy was then extended to another compound, glycolate. Using D-xylose as the substrate, an engineered strain produced 40 g/L glycolate at a yield of 0.63 g/g, which is the greatest reported yield to date.  相似文献   

17.
The thermophilic bacterium Thermus thermophilus HB8 is able to utilize lactose from whey-based media for the biosynthesis of polyhydroxyalkanoates (PHAs) under nitrogen limitation. T. thermophilus can utilize both, glucose and galactose, the products of lactose hydrolysis. When T. thermophilus HB8 was grown in culture media containing 24% (v/v) whey, PHA was accumulated up to 35% (w/w) of its biomass after 24 h of cultivation. The effect of initial phosphate concentration on the PHA production was also investigated. Using an initial phosphate concentration of 50 mM the PHA accumulation was enhanced. Analysis of the produced PHA from T. thermophilous HB8 grown in whey-based media revealed a novel heteropolymer consisting of the short chain length 3-hydroxyvalerate (3HV; 38 mol%) and the medium chain length, 3-hydroxyheptanoate (3HHp; 9.89 mol%), 3-hydroxynanoate (3HN; 16.59 mol%) and 3-hydroxyundecanoate (3HU; 35.42 mol%). Despite the low molecular weight of the produced PHA by T. thermophilus, whey could be an excellent substrate for the production of heteropolymers with unique properties.  相似文献   

18.
Five bacterial strains screened from a batch of 39 samples could convert glycerol anaerobically to 1,3-propanediol (1,3-PD). One of the strains, XJ-Li, which could synthesize 1,3-PD with a higher concentration, was identified and characterized. Phylogenetic analysis of the strain XJ-Li included the study of morphology, physiological and biochemical characteristics. In addition, 16SrDNA sequences were created. The results indicated that this strain is a member of Klebsiella pneumoniae. The optimal cultivation parameters for pH and temperature were determined as 8.0 and 40 °C, respectively. The optimized nitrogen source and carbon source were 6.0 g/L of (NH4)2SO4 and 20 g/L of glycerol, respectively. After 8 h in batch fermentation, both the 1,3-PD concentration and glycerol consumption reached the maximum, with 12.2 g/L of 1,3-PD and 1.53 g/L h of productivity, and a molar yield of 1,3-PD to glycerol of 0.75. Fed-batch fermentation also indicated a higher molar yield of 0.70, and the concentration of 1,3-PD reached 38.1 g/L after 66.4 g/L of glycerol consumption. The results of batch and fed-batch fermentations demonstrated that K. pneumoniae XJ-Li would be an excellent 1,3-PD producer.  相似文献   

19.
《Process Biochemistry》2014,49(10):1580-1586
Two-stage cultivation of Ganoderma lucidum was performed for the enhanced production of ganoderic acid (GA). Cellulase was identified to be an effective elicitor for the improvement of GA production, and GA titer reached 1334.5 mg/l compared to the control (779.6 mg/l) using lactose as the substrate without cellulase addition. Loading of 5 mg/l cellulase on day 3 resulted in the maximal GA titer of 1608 mg/l. To our knowledge, this is the first time that cellulase was used as the elicitor to enhance GA production. Submerged fermentation in a 2.0-l bioreactor was also conducted with cellulase as the elicitor, and as a result the maximal GA titer of 1252.7 mg/l was obtained on day 12. This is so far the best GA production obtained in submerged fermentation of G. lucidum.  相似文献   

20.
This work studied the hydrolysis of lactose using β-galactosidase from Aspergillus oryzae immobilized with a combination of adsorption and glutaraldehyde cross-linking onto the ion exchange resin Duolite A568 as a carrier. A central composite design (CCD) was used to study the effects of lactose concentration and feed flow rate on the average hydrolysis reaction rate and lactose conversion in a fixed bed reactor operating continuously with an upflow at a temperature of 35 ± 1 °C. The optimal conditions for the average hydrolysis reaction rate and the lactose conversion included a lactose concentration of 50 g/L and a feed flow rate of 6 mL/min. The average reaction rate and conversion reached 2074 U and 65%, respectively. The immobilized enzyme activity was maintained during the 30 days of operation in a fixed bed reactor with a 0.3 mL/min feed flow rate of a 50 g/L lactose solution at room temperature. Feed flows ranging from 0.6 to 12 mL/min were used to determine the distribution of residence times and the kinetics of the fixed bed reactor. A non-ideal flow pattern with the formation of a bypass flow in the fixed bed reactor was identified. The conditions used for the kinetics study included a lactose solution concentration of 50 g/L at pH 4.5 and a temperature of 35 ± 1 °C. Kinetic models using a PFR and axial dispersion methods were used to describe the lactose hydrolysis in the fixed bed reactor, thus accounting for the competitive inhibition by galactose. To increase the lactose conversion, experiments were performed for two fixed bed reactors in series, operating in continuous duty with upflow, with the optimal conditions determined using the CCD for a fixed bed reactor. The total conversion for the two reactors in series was 82%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号