首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to quantify the influence of inevitable ankle joint motion during an isometric contraction on the measured change of the gastrocnemius medialis muscle (GM) architecture in vivo during the loading and the unloading phase. Sitting on a dynamometer subjects performed isometric maximal voluntary contractions as well as contractions induced by electrostimulation. Synchronous joint angular motion, plantarflexion moment, foot’s centre of pressure and real-time ultrasonography of muscle architecture changes of the GM were obtained. During the contraction the ankle joint position altered and significantly affected the change in muscle architecture. At maximal tendon force (1094 ± 323 N), the measured fascicle length overestimated the change in fascicle length due to the tendon force by 1.53 cm, while the measured pennation angle overestimated the change in pennation angle due to the tendon force by 5.5°. At the same tendon force the measured fascicle length and pennation angle were significantly different between loading and unloading conditions. After correcting the values for the change in ankle joint angle no differences between the loading and the unloading phase at the same tendon force were found. Concerning the estimation of GM fascicle length–force and pennation angle–force curves during the loading and unloading phase of an isometric contraction, these findings indicate that not accounting for ankle joint motion will produce unreliable results.  相似文献   

2.
The purpose of this study was to assess the reproducibility of fascicle length (FL) and pennation angle (PA) of gastrocnemius medialis (GM) muscle during running in vivo. Twelve male recreational long distance runners (mean ± SD; age: 24 ± 3 years, mass: 76 ± 7 kg) ran on a treadmill at a speed of 3.0 m/s, wearing their own running shoes, for two different 10 min sessions that were at least 2 days apart. For each test day 10 acceptable trials were recorded. Ankle and knee joint angle data were recorded by a Vicon 624 system with three cameras operating at 120 Hz. B-mode ultrasonography was used to examine fascicle length and pennation angle of gastrocnemius medialis muscle. The ultrasound probe was firmly secured on the muscle belly using a lightweight foam fixation. The results indicated that fascicle length and pennation angle demonstrated high reproducibility values during treadmill running both for within and between test days. The root mean square scores between the repeated waveforms of pennation angle and fascicle length were small (∼2° and ∼3.5 mm, respectively). However, ∼14 trials for pennation angle and ∼9 trials for fascicle length may be required in order to record accurate data from muscle architecture parameters. In conclusion, ultrasound measurements may be highly reproducible during dynamic movements such as treadmill running, provided that a proper fixation is used in order to assure the constant location and orientation of the ultrasound probe throughout the movement.  相似文献   

3.
    
The aim of this study was to compare the effects of resistance training to muscle failure (RT-F) and non-failure (RT-NF) on muscle mass, strength and activation of trained individuals. We also compared the effects of these protocols on muscle architecture parameters. A within-subjects design was used in which 14 participants had one leg randomly assigned to RT-F and the other to RT-NF. Each leg was trained 2 days per week for 10 weeks. Vastus lateralis (VL) muscle cross-sectional area (CSA), pennation angle (PA), fascicle length (FL) and 1-repetition maximum (1-RM) were assessed at baseline (Pre) and after 20 sessions (Post). The electromyographic signal (EMG) was assessed after the training period. RT-F and RT-NF protocols showed significant and similar increases in CSA (RT-F: 13.5% and RT-NF: 18.1%; P < 0.0001), PA (RT-F: 13.7% and RT-NF: 14.4%; P < 0.0001) and FL (RT-F: 11.8% and RT-NF: 8.6%; P < 0.0001). All protocols showed significant and similar increases in leg press (RT-F: 22.3% and RT-NF: 26.7%; P < 0.0001) and leg extension (RT-F: 33.3%, P < 0.0001 and RT-NF: 33.7%; P < 0.0001) 1-RM loads. No significant differences in EMG amplitude were detected between protocols (P > 0.05). In conclusion, RT-F and RT-NF are similarly effective in promoting increases in muscle mass, PA, FL, strength and activation.  相似文献   

4.
In the present study, we investigated whether weak (10% of maximal voluntary contraction) tonic dorsiflexion (DF) and plantarflexion (PF) affects the two conventional parameters used for evaluating the excitability of the soleus motoneuron (MN) pool, i.e. the ratio of the threshold of H-reflex to that of M-response (Hth:Mth) and the ratio of the maximal amplitude of H-reflex to that of M-response (Hmax:Mmax) in human subjects. The results showed that the Hmax:Mmax decreased during DF and increased during PF compared with that during rest, whereas no clear alteration was observed in Hth:Mth. These results are consistent with the scheme proposed by earlier workers, who have argued that neither inhibitory nor facilitatory effects of the conditioning stimulus apply to specific spinal reflex circuits occurring around the threshold of the test H-reflex. It is suggested, therefore, that the conventional use of the Hth:Mth ratio as a parameter reflecting the excitability of the MN pool should be reconsidered.  相似文献   

5.
    
For detailed analyses of muscle adaptation mechanisms during growth, ageing or disease, reliable measurements of muscle architecture are required. Diffusion tensor imaging (DTI) and DTI tractography have been used to reconstruct the architecture of human muscles in vivo. However, muscle architecture measurements reconstructed with conventional DTI techniques are often anatomically implausible because the reconstructed fascicles do not terminate on aponeuroses, as real muscle fascicles are known to do. In this study, we tested the reliability of an anatomically constrained DTI-based method for measuring three-dimensional muscle architecture. Anatomical magnetic resonance images and diffusion tensor images were obtained from the left legs of eight healthy participants on two occasions one week apart. Muscle volumes, fascicle lengths, pennation angles and fascicle curvatures were measured in the medial and lateral gastrocnemius, soleus and the tibialis anterior muscles. Averaged across muscles, the intraclass correlation coefficient was 0.99 for muscle volume, 0.81 for fascicle length, 0.73 for pennation angle and 0.76 for fascicle curvature. Measurements of muscle architecture obtained using conventional DTI tractography were highly sensitive to variations in the stopping criteria for DTI tractography. The application of anatomical constraints reduced this sensitivity significantly. This study demonstrates that anatomically constrained DTI tractography can provide reliable and robust three-dimensional measurements of whole-muscle architecture. The algorithms used to constrain tractography have been made publicly available.  相似文献   

6.
Static, B-mode ultrasound is the most common method of measuring fascicle length in vivo. However, most forearm muscles have fascicles that are longer than the field-of-view of traditional ultrasound (T-US). As such, little work has been done to quantify in vivo forearm muscle architecture. The extended field-of-view ultrasound (EFOV-US) method, which fits together a sequence of B-mode images taken from a continuous ultrasound scan, facilitates direct measurements of longer, curved fascicles. Here, we test the validity and reliability of the EFOV-US method for obtaining fascicle lengths in the extensor carpi ulnaris (ECU). Fascicle lengths from images of the ECU captured in vivo with EFOV-US were compared to lengths from a well-established method, T-US. Images were collected in a joint posture that shortens the ECU such that entire fascicle lengths were captured within a single T-US image. Resulting measurements were not significantly different (p = 0.18); a Bland-Altman test demonstrated their agreement. A novice sonographer implemented EFOV-US in a phantom and in vivo on the ECU. The novice sonographer’s measurements from the ultrasound phantom indicate that the combined imaging and analysis method is valid (average error = 2.2 ± 1.3 mm) and the in vivo fascicle length measurements demonstrate excellent reliability (ICC = 0.97). To our knowledge, this is the first study to quantify in vivo fascicle lengths of the ECU using any method. The ability to define a muscle’s architecture in vivo using EFOV-US could lead to improvements in diagnosis, model development, surgery guidance, and rehabilitation techniques.  相似文献   

7.
    
The purpose of this study was to determine the validity of fascicle length estimation in the vastus lateralis (VL) and vastus intermedius (VI) using ultrasonography. The fascicle lengths of the VL and VI muscles were measured directly (dFL) using calipers, and were estimated (estmFL) using ultrasonography, in 10 legs from five Thiel’s embalmed cadavers. To determine the validity of the estmFLs, FL was estimated using five previously published models and compared with dFL. The intraclass correlation coefficients (ICCs) of two of the five models were > 0.75, indicating that these estimates were valid. Both of these models combined measurement of the length of the visible part of the fascicle with linear extrapolation of the length of the part of the fascicle that was not visible on the sonographic image. The ICCs and absolute% difference were best in models that used appropriate pennation angles. These results suggest that two of the five previously published models are valid for obtaining estmFL of the VL and VI using ultrasonography.  相似文献   

8.
    
The purpose of the present study was to evaluate active muscle stiffness with the stretch reflex according to changes (in 110-ms period after stretching) in torque and fascicle length during slower angular velocity (peak angular velocity of 100 deg·s−1) in comparison with active muscle stiffness without the stretch reflex (in 60-ms period after stretching) during slower and faster (peak angular velocity of 250 deg·s−1) angular velocities. Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length with slower and faster stretching during submaximal isometric contractions (10–90% maximal voluntary contractions). Active muscle stiffness significantly increased for both angular velocities and analyzed periods as torque levels exerted became higher. The effects of angular velocities and the interaction between angular velocities and torque levels were not significantly different between 250 deg·s−1 (in 60-ms period after stretching) and 100 deg·s−1 (in 110-ms period after stretching) conditions. The effects of the analyzed periods and the interaction between analyzed periods and torque levels were not significantly different between the analyzed periods (60-ms and 110-ms periods after stretching) for the 100 deg·s−1 condition. Furthermore, active muscle stiffness measured during the same angular velocity had significant correlations between those calculated in the different analyzed periods, whereas those under 250 deg·s−1 (60-ms period after stretching) did not correlate with those under 100 deg·s−1 (110-ms period after stretching). These results suggest that active muscle stiffness is not influenced by the stretch reflex.  相似文献   

9.
    
PurposeWe assessed fascicle behaviors of the upper extremities during isometric contractions at different joint angles in this study.MethodsThirteen healthy men and women performed isometric elbow extension tasks at 50% and 75% of maximal voluntary contraction (MVC) at 60°, 90°, and 120° of elbow extension (full extension = 180°). Extended field-of-view B-mode ultrasonography was used to obtain sagittal plane panoramic images of the long head (TB-Long) and medial head (TB-Med) of the triceps brachii at rest and during contraction; fascicle length and pennation angle were measured.ResultsIn the TB-Long, significant fascicle shortening from rest was found during 50% and 75%MVC at 60° and during 75%MVC at 90° of extension. There was no significant fascicle shortening in the TB-Med muscle under any conditions. There was no significant pennation angle change from rest in either muscle. The pennation angle of the TB-Long was significantly greater than that of the TB-Med under all conditions.ConclusionsThese results suggest that fascicle shortening in the TB-Long muscle occurs in flexion; however, no change was found in the TB-Med. In the upper extremity muscle–tendon complex, the superficial and deeper muscles may have different force-transmission efficiency at flexed joint angles.  相似文献   

10.
    
Sprinters have been found to possess longer muscle fascicles than non-sprinters, which is thought to be beneficial for high-acceleration movements based on muscle force-length-velocity properties. However, it is unknown if their morphology is a result of genetics or training during growth. To explore the influence of training during growth, thirty guinea fowl (Numida meleagris) were split into exercise and sedentary groups. Exercise birds were housed in a large pen and underwent high-acceleration training during their growth period (age 4–14 weeks), while sedentary birds were housed in small pens to restrict movement. Morphological analyses (muscle mass, PCSA, optimal fascicle length, pennation angle) of a hip extensor muscle (ILPO) and plantarflexor muscle (LG), which differ in architecture and function during running, were performed post-mortem. Muscle mass for both ILPO and LG was not different between the two groups. Exercise birds were found to have ∼12% and ∼14% longer optimal fascicle lengths in ILPO and LG, respectively, than the sedentary group despite having ∼3% shorter limbs. From this study we can conclude that optimal fascicle lengths can increase as a result of high-acceleration training during growth. This increase in optimal fascicle length appears to occur irrespective of muscle architecture and in the absence of a change in muscle mass. Our findings suggest high-acceleration training during growth results in muscles that prioritize adaptations for lower strain and shortening velocity over isometric strength. Thus, the adaptations observed suggest these muscles produce higher force during dynamic contractions, which is beneficial for movements requiring large power outputs.  相似文献   

11.
    
The purpose of this study was to compare the fascicle length, angle pennation and mechanical properties of the biceps femoris long head (BFlh) in dominant and non-dominant limbs in previously injured and uninjured professional football players. Fifteen professional football players were recruited to participate in this study. Seven players had suffered a BFlh injury during the previous season. Myotonometry mechanical properties were measured in the proximal, common tendon and distal BFlh using MyotonPRO, and angle pennation and fascicle length were also measured. We observed significantly higher distal BFlh frequency, stiffness, decrement, relaxation and creep than in the common tendon and proximal BFlh. The previously injured players showed significantly higher frequency and stiffness, and lower relaxation and creep in the dominant BFlh than did uninjured players. There were no significant differences between the fascicle length and angle pennation in previously injured and uninjured BFlh. Myotonometric measurement provides a quick and inexpensive way to check the properties of the BFlh in professional football players. Professional football players with previous BFlh injury showed higher intrinsic tension and a poorer capacity to deform than did players with no injury to the BFlh.  相似文献   

12.
    
The cercopithecoid wrist joint differs from the wrist joints of hominoids in several ways. The distal ulna, the distal radius, the pisiform, the triquetrum, the hamate, and the base of the fifth metacarpal are on the one hand remarkably alike among cercopithecoid genera, and on the other remarkably distinct from homologous bones in the Hominoidea. Functionally, the triquetrum and the pisiform, in conjuction with the ulnar styloid process, check the proximal carpal row during ulnar deviation, and are possibly important in stabilizing the wrist during dorsiflexion as well. The head of the ulna almost certainly betokens a range of radioulnar supination in cercopithecoids that is substantially less than is to be found in any of the hominoid genera. The articulation between the hamate bone and the base of the fifth metacarpal allows for considerable dorsiflexion in the Cercopithecoidea; this potential was not evidenct in any of the hominoids examined. Behaviorally, the cercopithecoid wrist can most profitably be viewed as an adaptation for a quadrupedal life style involving dorsiflexion of the wrist and palmigrade/digitigrade substrate contact. The hominoid wrist joint is not adapted for such a behavioral potential.  相似文献   

13.
    
Objective:This study aims to investigate the effect of 8-week whole-body vibration (WBV) added to conventional training on muscular architecture, dynamic muscle strength and physical performance compared to controls in young basketball players.Methods:Sixteen young basketball players between the ages of 14-16 years were randomly assigned to whole body vibration group (VG) or control group (CG). Both groups were trained with a conventional program. Pennation angle (PeA), fascicle length and muscle thickness of Rectus Femoris (RF) and Vastus lateralis were measured by ultrasonography. Isokinetic dynamic muscle testing at 180 °/s and 60°/s, squat jump (SJ) and flexibility were evaluated before and after 8 weeks of training programs. Primary outcome measure was the fascicle length.Results:Fascicle length of RF, SJ height and flexibility increased significantly within VG compared to pretraining (p<0.05). SJ height increased in VG compared to CG significantly following training (p<0.05). PeA, fascicle length, muscle thicknesses, strength and flexibility did not differ between groups.Conclusion:Eight weeks of WBV training improved fascicle length of RF, SJ height, and flexibility compared to pre-training. Addition of WBV to conventional training did not cause improvement in muscle architecture, strength and flexibility compared to conventional training alone.  相似文献   

14.
    
Ultrasonography is a useful technique to study muscle contractions in vivo, however larger muscles like vastus lateralis may be difficult to visualise with smaller, commonly used transducers. Fascicle length is often estimated using linear trigonometry to extrapolate fascicle length to regions where the fascicle is not visible. However, this approach has not been compared to measurements made with a larger field of view for dynamic muscle contractions. Here we compared two different single-transducer extrapolation methods to measure VL muscle fascicle length to a direct measurement made using two synchronised, in-series transducers. The first method used pennation angle and muscle thickness to extrapolate fascicle length outside the image (extrapolate method). The second method determined fascicle length based on the extrapolated intercept between a fascicle and the aponeurosis (intercept method). Nine participants performed maximal effort, isometric, knee extension contractions on a dynamometer at 10° increments from 50 to 100° of knee flexion. Fascicle length and torque were simultaneously recorded for offline analysis. The dual transducer method showed similar patterns of fascicle length change (overall mean coefficient of multiple correlation was 0.76 and 0.71 compared to extrapolate and intercept methods respectively), but reached different absolute lengths during the contractions. This had the effect of producing force–length curves of the same shape, but each curve was shifted in terms of absolute length. We concluded that dual transducers are beneficial for studies that examine absolute fascicle lengths, whereas either of the single transducer methods may produce similar results for normalised length changes, and repeated measures experimental designs.  相似文献   

15.
    
Magnetic resonance and ultrasound imaging have shown hamstring strain injuries occur most often in the biceps femoris long head (BFLH), and particularly in the proximal vs. distal region of this muscle. Animal research and musculoskeletal modeling (MSK) have detected heterogeneous fascicle behavior within muscle regions, and within fascicles. Understanding architectural behavior differences during muscle contractions may help to discern possible mechanisms behind proximal BFLH injuries. The purpose of our study was to assess the magnitude of shortening of the proximal and distal fascicles of the BFLH under a range of muscle activation levels under isometric conditions using ultrasound imaging (US). Thirteen healthy adults performed targeted sustained isometric contractions while US were taken of the entire BFLH. Measurements of fascicle lengths in both muscle regions were compared at 20%, 30%, 50%, and 67% MVIC. The results showed that while both regions shortened significantly with activation, the proximal fascicles were significantly longer, regardless of activation level (~38%), and shortened significantly more than the distal fascicles overall (~40%), and cumulatively at higher activation levels (30% and above). No significant strain differences were found between the two regions. These data suggest heterogeneous fascicle behavior exists in an absolute sense; however, differences in behavior are eliminated when normalized (strain). Coupled with MSK literature, the absence of regional fascicle strain differences in this study may indicate strain heterogeneity is not detectable at the whole fascicle level. Further knowledge of this commonly strained muscle?s regional behavior during dynamic movements could provide evidence of proximal hamstring strain predisposition.  相似文献   

16.
17.
The goal of this study was to evaluate the relation between kittens' birth weights and biometrical factors from the kittens and the mother during pregnancy. Knowing fetal birth weight could help in detecting abnormalities before parturition. A Caesarean-section or a postnatal management plan could be scheduled. Consequently, the neonatal mortality rate should be decreased. We used ultrasonographic measurements of femur length (FL) or fetal biparietal diameter (BPD), pregnancies, and maternal factors to obtain a model of prediction. For this purpose, linear mixed-effects models were used because of random effects (several fetuses for one queen and a few paired measurements) and fixed effects (litter size, pregnancy rank, weight, wither height, and age of the queen). This study was performed in 24 purebred queens with normal pregnancies and normal body conditions. Queens were scanned in the second half of pregnancy, using a micro-convex probe. They gave birth to 140 healthy kittens whose mean birth weight was 104 g (ranged 65 to 165 g). No correlation between the birth weight and the age of the queen, as a maternal factor alone, was observed. But the birth weight was found to be inversely proportional to the pregnancy rank and the litter size. Moreover, birth weight increased when the weight and wither height of queen increased. BPD and FL increased linearly during pregnancy so a model was used to estimate mean birth weight. Using this model, we found a correlation between mean birth weights and an association of parameters: maternal factors (wither height and age), and litter size.  相似文献   

18.
树木叶片面积与叶柄长、节间长和叶倾角的关系初探   总被引:1,自引:0,他引:1  
树木的叶片面积与叶柄长、节间长之间有着明显的内在联系.本文分析研究了这个联系,在适当的理想假设下通过数学建模得到了反映树木叶片面积与叶柄长、节间长和叶倾角之间的关系模型.接着,文章对模型的不合理之处进行了分析与改进,并得到叶片面积与节间长、心茎距之间的关系表达式.最后,本文利用分别采集到的13种互生和对生树木叶子上的相关数据对模型进行了检验.检验结果表明建立的模型是正确的,能够反映树木的叶片面积与叶柄长、节间长和叶倾角之间的相互数量关系.  相似文献   

19.
    
Treadmill has been broadly used in laboratory and rehabilitation settings for the purpose of facilitating human locomotion analysis and gait training. The objective of this study was to determine whether dynamic gait stability differs or resembles between the two walking conditions (overground vs. treadmill) among young adults. Fifty-four healthy young adults (age: 23.9 ± 4.7 years) participated in this study. Each participant completed five trials of overground walking followed by five trials of treadmill walking at a self-selected speed while their full body kinematics were gathered by a motion capture system. The spatiotemporal gait parameters and dynamic gait stability were compared between the two walking conditions. The results revealed that participants adopted a “cautious gait” on the treadmill compared with over ground in response to the possible inherent challenges to balance imposed by treadmill walking. The cautious gait, which was achieved by walking slower with a shorter step length, less backward leaning trunk, shortened single stance phase, prolonged double stance phase, and more flatfoot landing, ensures the comparable dynamic stability between the two walking conditions. This study could provide insightful information about dynamic gait stability control during treadmill ambulation in young adults.  相似文献   

20.
    
We have recently demonstrated that the triceps surae muscles energy cost (ECTS) represents a substantial portion of the total metabolic cost of running (Erun). Therefore, it seems relevant to evaluate the factors which dictate ECTS, namely the amount and velocity of shortening, since it is likely these factors will dictate Erun. Erun and triceps surae morphological and AT mechanical properties were obtained in 46 trained and elite male and female distance runners using ultrasonography and dynamometry. ECTS (J·stride−1) at the speed of lactate threshold (sLT) was estimated from AT force and crossbridge mechanics and energetics. To estimate the relative impact of these factors on ECTS, mean values for running speed, body mass, resting fascicle length (Lf), Achilles tendon stiffness and moment arm and maximum isometric plantarflexion torque were obtained. ECTS was calculated across a range (mean ± 1 sd) of values for each independent factor. Average sLT was 233 m·min−1. At this speed, ECTS was 255 J·stride−1. Estimated fascicle shortening velocity was 0.08 Vmax and the level of muscle activation was 84.7% of maximum isometric torque. Compared to the ECTS calculated from the lowest range of values obtained for each independent factor, higher AT stiffness was associated with a 39% reduction in ECTS, 81% reduction in fascicle shortening velocity and a 31% reduction in muscle activation. Longer AT moment arms and elevated body masses were associated with an increase in ECTS of 18% and 23%, respectively. These results demonstrate that a low ECTS is achieved primarily from a high AT stiffness and low body mass, which is exemplified in elite distance runners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号