首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
PurposeTo verify lung stereotactic body radiotherapy (SBRT) plans using a secondary treatment planning system (TPS) as an independent method of verification and to define tolerance levels (TLs) in lung SBRT between the primary and secondary TPSs.MethodsA total of 147 lung SBRT plans calculated using X-ray voxel Monte Carlo (XVMC) were exported from iPlan to Eclipse in DICOM format. Dose distributions were recalculated using the Acuros XB (AXB) and the anisotropic analytical algorithm (AAA), while maintaining monitor units (MUs) and the beam arrangement. Dose to isocenter and dose-volumetric parameters, such as D2, D50, D95 and D98, were evaluated for each patient. The TLs of all parameters between XVMC and AXB (TLAXB) and between XVMC and AAA (TLAAA) were calculated as the mean ± 1.96 standard deviations.ResultsAXB values agreed with XVMC values within 3.5% for all dosimetric parameters in all patients. By contrast, AAA sometimes calculated a 10% higher dose in PTV D95 and D98 than XVMC. The TLAXB and TLAAA of the dose to isocenter were −0.3 ± 1.4% and 0.6 ± 2.9%, respectively. Those of D95 were 1.3 ± 1.8% and 1.7 ± 3.6%, respectively.ConclusionsThis study quantitatively demonstrated that the dosimetric performance of AXB is almost equal to that of XVMC, compared with that of AAA. Therefore, AXB is a more appropriate algorithm for an independent verification method for XVMC.  相似文献   

2.
AimTo discuss current dosage for stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC) patients and suggest alternative treatment strategies according to liver segmentation as defined by the Couinaud classification.BackgroundSBRT is a safe and effective alternative treatment for HCC patients who are unable to undergo liver ablation/resection. However, the SBRT fractionation schemes and treatment planning strategies are not well established.Materials and methodsIn this article, the latest developments and key findings from research studies exploring the efficacy of SBRT fractionation schemes for treatment of HCC are reviewed. Patients’ characteristics, fractionation schemes, treatment outcomes and toxicities were compiled. Special attention was focused on SBRT fractionation approaches that take into consideration liver segmentation according to the Couinaud classification and functional hepatic reserve based on Child–Pugh (CP) liver cirrhosis classification.ResultsThe most common SBRT fractionation schemes for HCC were 3 × 10–20 Gy, 4–6 × 8–10 Gy, and 10 × 5–5.5 Gy. Based on previous SBRT studies, and in consideration of tumor size and CP classification, we proposed 3 × 15–25 Gy for patients with tumor size <3 cm and adequate liver reserve (CP-A score 5), 5 × 10–12 Gy for patients with tumor sizes between 3 and 5 cm or inadequate liver reserve (CP-A score 6), and 10 × 5–5.5 Gy for patients with tumor size >5 cm or CP-B score.ConclusionsTreatment schemes in SBRT for HCC vary according to liver segmentation and functional hepatic reserve. Further prospective studies may be necessary to identify the optimal dose of SBRT for HCC.  相似文献   

3.

Aim

To identifying depth dose differences between the two versions of the algorithms using AIP CT of a 4D dataset.

Background

Motion due to respiration may challenge dose prediction of dose calculation algorithms during treatment planning.

Materials and methods

The two versions of depth dose calculation algorithms, namely, Anisotropic Analytical Algorithm (AAA) version 10.0 (AAAv10.0), AAA version 13.6 (AAAv13.6) and Acuros XB dose calculation (AXB) algorithm version 10.0 (AXBv10.0), AXB version 13.6 (AXBv13.6), were compared against a full MC simulated 6X photon beam using QUASAR respiratory motion phantom with a moving chest wall. To simulate the moving chest wall, a 4 cm thick wax mould was attached to the lung insert of the phantom. Depth doses along the central axis were compared in the anterior and lateral beam direction for field sizes 2 × 2 cm2, 4 × 4 cm2 and 10 × 10 cm2.

Results

For the lateral beam direction, the moving chest wall highlighted differences of up to 105% for AAAv10.0 and 40% for AXBv10.0 from MC calculations in the surface and buildup doses. AAAv13.6 and AXBv13.6 agrees with MC predictions to within 10% at similar depth. For anterior beam doses, dose differences predicted for both versions of AAA and AXB algorithm were within 7% and results were consistent with static heterogeneous studies.

Conclusions

The presence of the moving chest wall was capable of identifying depth dose differences between the two versions of the algorithms. These differences could not be identified in the static chest wall as shown in the anterior beam depth dose calculations.  相似文献   

4.
PurposeTo quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation Therapy (mp-ssIMRT)).MethodsTen patients were retrospectively planned with VMAT according to three institution’s protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques. This resulted in mp-ssIMRT, mp-VMAT, and ap-VMAT plans. Introduced treatment errors included Multi Leaf Collimator (MLC) shifts, MLC field size (MLCfs), gantry and collimator errors. A change of more than 5% in most selected dose metrics was considered to have potential clinical impact. The original patient plan total Monitor Units (MUs) were correlated to the total number of dose metrics exceeded.ResultsThe impact of different errors was consistent, with ap-VMAT plans (two institutions) showing larger dose deviations than mp-VMAT created plans (one institution). Across all institutions’ VMAT plans the significant errors included; ±5° for the collimator angle, ±5 mm for the MLC shift and +1, ±2 and ±5 mm for the MLC field size. The total number of dose metrics exceeding tolerance was positively correlated to the VMAT total plan MUs (r = 0.51, p < 0.001), across all institutions and techniques.ConclusionsDifferences in VMAT robustness to simulated errors across institutions occurred due to planning method differences. Whilst ap-VMAT was most sensitive to MLC errors, it also produced the best quality treatment plans. Mp-ssIMRT was most robust to errors. Higher VMAT treatment plan complexity led to less robust plans.  相似文献   

5.
PurposeTo test the hypothesis that ruptured abdominal aortic aneurysms (AAA) are globally weaker than unruptured ones.MethodsFour ruptured and seven unruptured AAA specimens were harvested whole from fresh cadavers during autopsies performed over an 18-month period. Multiple regionally distributed longitudinally oriented rectangular strips were cut from each AAA specimen for a total of 77 specimen strips. Strips were subjected to uniaxial extension until failure. Sections from approximately the strongest and weakest specimen strips were studied histologically and histochemically. From the load-extension data, failure tension, failure stress and failure strain were calculated. Rupture site characteristics such as location, arc length of rupture and orientation of rupture were also documented.ResultsThe failure tension, a measure of the tissue mechanical caliber was remarkably similar between ruptured and unruptured AAA (group mean±standard deviation of within-subject means: 11.2±2.3 versus 11.6±3.6 N/cm; p=0.866 by mixed model ANOVA). In post-hoc analysis, there was little difference between the groups in other measures of tissue mechanical caliber as well such as failure stress (95±28 versus 98±23 N/cm2; p=0.870), failure strain (0.39±0.09 versus 0.36±0.09; p=0.705), wall thickness (1.7±0.4 versus 1.5±0.4 mm; p=0.470) , and % coverage of collagen within tissue cross section (49.6±12.9% versus 60.8±9.6%; p=0.133). In the four ruptured AAA, primary rupture sites were on the lateral quadrants (two on left; one on left-posterior; one on right). Remarkably, all rupture lines had a longitudinal orientation and ranged from 1 to 6 cm in length.ConclusionThe findings are not consistent with the hypothesis that ruptured aortic aneurysms are globally weaker than unruptured ones.  相似文献   

6.
PurposeAccurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins.Materials and methodsThe internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors.ResultsThe mean 3D vector at initial set-up was 6.6 ± 2.3 mm, which was significantly reduced to 1.6 ± 0.8 mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3 mm in the LR, SI and AP directions, respectively.ConclusionsOn-line image guidance with the ITV–CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT.  相似文献   

7.
IntroductionWe evaluated the impact of 4DCT artifacts on carbon-ion pencil beam scanning dose distributions in lung and liver treatment.Methods & materials4DCT was performed in 20 liver and lung patients using area-detector CT (original 4DCT). 4DCT acquisition by multi-detector row CT was simulated using original 4DCT by selecting other phases randomly (plus/minus 20% phases). Since tumor position can move over the respiratory range in original 4DCT, mid-exhalation was set as reference phase. Total prescribed dose of 60 Gy (RBE) was delivered to the clinical target volume (CTV). Reference dose distribution was calculated with the original CT, and actual dose distributions were calculated with treatment planning parameters optimized using the simulated CT (simulated dose). Dose distribution was calculated by substituting these parameters into the original CT.ResultsFor liver cases, CTV-D95 and CTV-Dmin values for the reference dose were 97.6 ± 0.5% and 89.8 ± 0.6% of prescribed dose, respectively. Values for the simulated dose were significantly degraded, to 88.6 ± 14.0% and 46.3 ± 26.7%, respectively. Dose assessment results for lung cases were 84.8 ± 12.8% and 58.0 ± 24.5% for the simulated dose, showing significant degradation over the reference dose of 95.1 ± 1.5% and 87.0 ± 2.2%, respectively.Conclusions4DCT image quality should be closely checked to minimize degradation of dose conformation due to 4DCT artifacts. Medical staff should pay particular attention to checking the quality of 4DCT images as a function of respiratory phase, because it is difficult to recognize 4DCT artifact on a single phase in some cases  相似文献   

8.
AimTo evaluate the target dose coverage for lung stereotactic body radiotherapy (SBRT) using helical tomotherapy (HT) with the internal tumor volume (ITV) margin settings adjusted according to the degree of tumor motion.BackgroundLung SBRT with HT may cause a dosimetric error when the target motion is large.Materials and methodsTwo lung SBRT plans were created using a tomotherapy planning station. Using these original plans, five plans with different ITV margins (4.0–20.0 mm for superior-inferior [SI] dimension) were generated. To evaluate the effects of respiratory motion on HT, an original dynamic motion phantom was developed. The respiratory wave of a healthy volunteer was used for dynamic motion as the typical tumor respiratory motion. Five patterns of motion amplitude that corresponded to five ITV margin sizes and three breathing cycles of 7, 14, and 28 breaths per minute were used. We evaluated the target dose change between a static delivery and a dynamic delivery with each motion pattern.ResultsThe target dose difference increased as the tumor size decreased and as the tumor motion increased. Although a target dose difference of <5 % was observed at ≤10 mm of tumor motion for each condition, a maximum difference of -9.94 % ± 7.10 % was observed in cases of small tumors with 20 mm of tumor motion under slow respiration.ConclusionsMinimizing respiratory movement is recommended as much as possible for lung SBRT with HT, especially for cases involving small tumors.  相似文献   

9.
PurposeCommercial algorithms used in Radiotherapy include approximations that are generally acceptable. However their limits can be seen when confronted with small fields and low-density media. These conditions exist during the treatment of lung cancers with Stereotactic Body Radiation Therapy (SBRT) achieved with the “Deep Inspiration Breath Hold” (DIBH) technique. A Monte Carlo (MC) model of a linear accelerator was used to assess the performance of two algorithms (Varian Acuros and AAA) in these conditions. This model is validated using phantoms with different densities. Lastly, results for SBRT cases are compared to both Acuros and AAA.MethodsA Varian TrueBeam linac was modeled using GATE/Geant4 and validated by comparing dose distributions for simple fields to measurements in water and in heterogeneous phantoms composed of PMMA and two types of cork (corresponding to lung densities during free-breathing and DIBH). Experimental measurements are also compared to AAA and Acuros. Finally, results of Acuros/AAA are compared to MC for a clinical case (SBRT during DIBH).ResultsBased on 1D gamma index comparisons with measurements in water, the TrueBeam model was validated (>97% of points passed this test). In heterogeneous phantoms, and in particular for small field sizes, very low density (0.12 g.cm−3) and at the edge of the field, MC model was still in good agreement with measurements whilst AAA and Acuros showed discrepancies. With the patient CT, similar differences between MC and AAA/Acuros were observed for static fields but disappeared using an SBRT arc field.ConclusionsOur MC model is validated and limits of commercial algorithms are shown in very low densities.  相似文献   

10.
11.
PurposeTo investigate and improve the domestic standard of radiation therapy in the Republic of Korea.MethodsOn-site audits were performed for 13 institutions in the Republic of Korea. Six items were investigated by on-site visits of each radiation therapy institution, including collimator, gantry, and couch rotation isocenter check; coincidence between light and radiation fields; photon beam flatness and symmetry; electron beam flatness and symmetry; physical wedge transmission factors; and photon beam and electron beam outputs.ResultsThe average deviations of mechanical collimator, gantry, and couch rotation isocenter were less than 1 mm. Those of radiation isocenter were also less than 1 mm. The average difference between light and radiation fields was 0.9 ± 0.6 mm for the field size of 20 cm × 20 cm. The average values of flatness and symmetry of the photon beams were 2.9% ± 0.6% and 1.1% ± 0.7%, respectively. Those of electron beams were 2.5% ± 0.7% and 0.6% ± 1.0%, respectively. Every institutions showed wedge transmission factor deviations less than 2% except one institution. The output deviations of both photon and electron beams were less than ±3% for every institution.ConclusionsThrough the on-site audit program, we could effectively detect an inappropriately operating linacs and provide some recommendations. The standard of radiation therapy in Korea is expected to improve through such on-site audits.  相似文献   

12.
PurposeThe log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error.Methods and materialsModified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5 mm in opposite directions and systematic leaf shifts: ±1.0 mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks.ResultsFor MLC leaves calibrated within ±0.5 mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32 ± 0.27% and 0.82 ± 0.17 Gy for PTV and spinal cord, respectively, and in prostate plans 1.22 ± 0.36%, 0.95 ± 0.14 Gy, and 0.45 ± 0.08 Gy for PTV, rectum, and bladder, respectively.ConclusionsIn this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy.  相似文献   

13.
PurposeStudies using split field IMRT to spare dysphagia/aspiration related structures (DARS) have raised concern regarding dose uncertainty at matchline. This study explores the utility of hybrid VMAT in sparing the DARS and assesses matchline dose uncertainty in postoperative oral cavity cancer patients and compares it with VMAT.Methods & materialsTen postoperative oral cavity cancer patients were planned with h-VMAT and VMAT using the same planning CT dataset. PTV and DARS were contoured using standard delineation guidelines. In h-VMAT 80% of the neck dose was planned using AP/PA technique and then VMAT optimization was done for the total PTV by keeping the corresponding AP/PA plan as the base dose. Planning goal for PTV was V95%  95% and for DARS, adequate sparing. Plans and dose volume histograms were analyzed using dosimetric indices. Absolute point and portal dose measurements were done for h-VMAT plans to verify dose at the matchline.ResultsCoverage in both the techniques was comparable. Significant differences were observed in mean doses to DARS (Larynx: 24.36 ± 2.51 versus 16.88 ± 2.41 Gy; p < 0.0006, Pharyngeal constrictors: 25.16 ± 2.41 versus 21.2 ± 2.1 Gy; p < 0.005, Esophageal inlet: 18.71 ± 2 versus 12.06 ± 0.79 Gy; p < 0.0002) favoring h-VMAT. Total MU in both the techniques was comparable. Average percentage variations in point dose measurements in h-VMAT done at +3.5 and −3.5 positions were (1.47 ± 1.48 and 2.28 ± 1.35%) respectively. Average gamma agreement for portal dose measured was 97.07%.Conclusionh-VMAT achieves better sparing of DARS with no matchline dose uncertainty. Since these patients have swallowing dysfunction post-operatively, attempts should be made to spare these critical structures as much as possible.  相似文献   

14.
AimTo evaluate dose differences in lung metastases treated with stereotactic body radiotherapy (SBRT), and the correlation with local control, regarding the dose algorithm, target volume and tissue density.BackgroundSeveral studies showed excellent local control rates in SBRT for lung metastases, with different fractionation schemes depending on the tumour location or size. These results depend on the dose distributions received by the lesions in terms of the tissue heterogeneity corrections performed by the dose algorithms.Materials and methodsForty-seven lung metastases treated with SBRT, using intrafraction control and respiratory gating with internal fiducial markers as surrogates (ExacTrac, BrainLAB AG), were calculated using Pencil Beam (PB) and Monte Carlo (MC) (iPlan, BrainLAB AG).Dose differences between both algorithms were obtained for the dose received by 99% (D99%) and 50% (D50%) of the planning treatment volume (PTV). The biologically effective dose delivered to 99% (BED99%) and 50% (BED50%) of the PTV were estimated from the MC results. Local control was evaluated after 24 months of median follow-up (range: 3–52 months).ResultsThe greatest variations (40.0% in ΔD99% and 38.4% in ΔD50%) were found for the lower volume and density cases. The BED99% and BED50% were strongly correlated with observed local control rates: 100% and 61.5% for BED99% > 85 Gy and <85 Gy (p < 0.0001), respectively, and 100% and 58.3% for BED50% > 100 Gy and <100 Gy (p < 0.0001), respectively.ConclusionsLung metastases treated with SBRT, with delivered BED99% > 85 Gy and BED50% > 100 Gy, present better local control rates than those treated with lower BED values (p = 0.001).  相似文献   

15.
AimTo evaluate the performance of volumetric arc modulation with RapidArc against conventional IMRT for head and neck cancers.BackgroundRapidArc is a novel technique that has recently been made available for clinical use. Planning study was done for volumetric arc modulation with RapidArc against conventional IMRT for head and neck cancers.Materials and methodsTen patients with advanced tumors of the nasopharynx, oropharynx, and hypopharynx were selected for the planning comparison study. PTV was delineated for two different dose levels and planning was done by means of simultaneously integrated boost technique. A total dose of 70 Gy was delivered to the boost volume (PTV boost) and 57.7 Gy to the elective PTV (PTV elective) in 35 equal treatment fractions. PTV boost consisted of the gross tumor volume and lymph nodes containing visible macroscopic tumor or biopsy-proven positive lymph nodes, whereas the PTV elective consisted of elective nodal regions. Planning was done for IMRT using 9 fields and RapidArc with single arc, double arc. Beam was equally placed for IMRT plans. Single arc RapidArc plan utilizes full 360° gantry rotation and double arc consists of 2 co-planar arcs of 360° in clockwise and counter clockwise direction. Collimator was rotated from 35 to 45° to cover the entire tumor, which reduced the tongue and groove effect during gantry rotation. All plans were generated with 6 MV X-rays for CLINAC 2100 Linear Accelerator. Calculations were done in the Eclipse treatment planning system (version 8.6) using the AAA algorithm.ResultsDouble arc plans show superior dose homogeneity in PTV compared to a single arc and IMRT 9 field technique. Target coverage was almost similar in all the techniques. The sparing of spinal cord in terms of the maximum dose was better in the double arc technique by 4.5% when compared to the IMRT 9 field and single arc techniques. For healthy tissue, no significant changes were observed between the plans in terms of the mean dose and integral dose. But RapidArc plans showed a reduction in the volume of the healthy tissue irradiated at V15 Gy (5.81% for single arc and 4.69% for double arc) and V20 Gy (7.55% for single arc and 5.89% for double arc) dose levels when compared to the 9-Field IMRT technique. For brain stem, maximum dose was similar in all the techniques. The average MU (±SD) needed to deliver the dose of 200 cGy per fraction was 474 ± 80 MU and 447 ± 45 MU for double arc and single arc as against 948 ± 162 MU for the 9-Field IMRT plan. A considerable reduction in maximum dose to the mandible by 6.05% was observed with double arc plan. Double arc shows a reduction in the parotid mean dose when compared with single arc and IMRT plans.ConclusionRapidArc using double arc provided a significant sparing of OARs and healthy tissue without compromising target coverage compared to IMRT. The main disadvantage with IMRT observed was higher monitor units and longer treatment time.  相似文献   

16.
In the event of abdominal aortic aneurysm (AAA) rupture, the outcome is often death. This paper aims to experimentally identify the rupture locations of in vitro AAA models and validate these rupture sites using finite element analysis (FEA). Silicone rubber AAA models were manufactured using two different materials (Sylgard 160 and Sylgard 170, Dow Corning) and imaged using computed tomography (CT). Experimental models were inflated until rupture with high speed photography used to capture the site of rupture. 3D reconstructions from CT scans and subsequent FEA of these models enabled the wall stress and wall thickness to be determined for each of the geometries. Experimental models ruptured at regions of inflection, not at regions of maximum diameter. Rupture pressures (mean±SD) for the Sylgard 160 and Sylgard 170 models were 650.6±195.1 mmHg and 410.7±159.9 mmHg, respectively. Computational models accurately predicted the locations of rupture. Peak wall stress for the Sylgard 160 and Sylgard 170 models was 2.15±0.26 MPa at an internal pressure of 650 mmHg and 1.69±0.38 MPa at an internal pressure of 410 mmHg, respectively. Mean wall thickness of all models was 2.19±0.40 mm, with a mean wall thickness at the location of rupture of 1.85±0.33 and 1.71±0.29 mm for the Sylgard 160 and Sylgard 170 materials, respectively. Rupture occurred at the location of peak stress in 80% (16/20) of cases and at high stress regions but not peak stress in 10% (2/20) of cases. 10% (2/20) of models had defects in the AAA wall which moved the rupture location away from regions of elevated stress. The results presented may further contribute to the understanding of AAA biomechanics and ultimately AAA rupture prediction.  相似文献   

17.
18.
PurposeTo investigate the feasibility of a fast protocol for radiochromic film dosimetry to verify intensity-modulated radiotherapy (IMRT) plans.Method and materialsEBT3 film dosimetry was conducted in this study using the triple-channel method implemented in the cloud computing application (Radiochromic.com). We described a fast protocol for radiochromic film dosimetry to obtain measurement results within 1 h.Ten IMRT plans were delivered to evaluate the feasibility of the fast protocol. The dose distribution of the verification film was derived at 15, 30, 45 min using the fast protocol and also at 24 h after completing the irradiation. The four dose maps obtained per plan were compared using global and local gamma index (5%/3 mm) with the calculated one by the treatment planning system. Gamma passing rates obtained for 15, 30 and 45 min post-exposure were compared with those obtained after 24 h.ResultsSmall differences respect to the 24 h protocol were found in the gamma passing rates obtained for films digitized at 15 min (global: 99.6% ± 0.9% vs. 99.7% ± 0.5%; local: 96.3% ± 3.4% vs. 96.3% ± 3.8%), at 30 min (global: 99.5% ± 0.9% vs. 99.7% ± 0.5%; local: 96.5% ± 3.2% vs. 96.3 ± 3.8%) and at 45 min (global: 99.2% ± 1.5% vs. 99.7% ± 0.5%; local: 96.1% ± 3.8% vs. 96.3 ± 3.8%).ConclusionsThe fast protocol permits dosimetric results within 1 h when IMRT plans are verified, with similar results as those reported by the standard 24 h protocol.  相似文献   

19.
《Cellular signalling》2014,26(11):2521-2529
Dopamine D1-like receptors (D1R and D5R) stimulate adenylyl cyclase (AC) activity, whereas the D2-like receptors (D2, D3 and D4) inhibit AC activity. D1R, but not the D5R, has been reported to regulate AC activity in lipid rafts (LRs). We tested the hypothesis that D1R and D5R differentially regulate AC activity in LRs using human embryonic kidney (HEK) 293 cells heterologously expressing human D1 or D5 receptor (HEK-hD1R or HEK-hD5R) and human renal proximal tubule (hRPT) cells that endogenously express D1R and D5R. Of the AC isoforms expressed in HEK and hRPT cells (AC3, AC5, AC6, AC7, and AC9), AC5/6 was distributed to a greater extent in LRs than non-LRs in HEK-hD1R (84.5 ± 2.3% of total), HEK-hD5R (68.9 ± 3.1% of total), and hRPT cells (66.6 ± 2.2% of total) (P < 0.05, n = 4/group). In HEK-hD1R cells, the D1-like receptor agonist fenoldopam (1μM/15 min) increased AC5/6 protein (+ 17.2 ± 3.9% of control) in LRs but decreased it in non-LRs (− 47.3 ± 5.3% of control) (P < 0.05, vs. control, n = 4/group). By contrast, in HEK-hD5R cells, fenoldopam increased AC5/6 protein in non-LRs (+ 67.1±5.3% of control, P < 0.006, vs. control, n = 4) but had no effect in LRs. In hRPT cells, fenoldopam increased AC5/6 in LRs but had little effect in non-LRs. Disruption of LRs with methyl-β-cyclodextrin decreased basal AC activity in HEK-D1R (− 94.5 ± 2.0% of control) and HEK-D5R cells (− 87.1 ± 4.6% of control) but increased it in hRPT cells (6.8 ± 0.5-fold). AC6 activity was stimulated to a greater extent by D1R than D5R, in agreement with the greater colocalization of AC5/6 with D1R than D5R in LRs. We conclude that LRs are essential not only for the proper membrane distribution and maintenance of AC5/6 activity but also for the regulation of D1R- and D5R-mediated AC signaling.  相似文献   

20.
PurposeThe aim of this study was to test the feasibility and dosimetric accuracy of a method that employs planning CT-to-MVCT deformable image registration (DIR) for calculation of the daily dose for head and neck (HN) patients treated with Helical Tomotherapy (HT).MethodsFor each patient, the planning kVCT (CTplan) was deformably registered to the MVCT acquired at the 15th therapy session (MV15) with a B-Spline Free Form algorithm using Mattes mutual information (open-source software 3D Slicer), resulting in a deformed CT (CTdef). On the same day as MVCT15, a kVCT was acquired with the patient in the same treatment position (CT15). The original HT plans were recalculated both on CTdef and CT15, and the corresponding dose distributions were compared; local dose differences <2% of the prescribed dose (DD2%) and 2D/3D gamma-index values (2%-2 mm) were assessed respectively with Mapcheck SNC Patient software (Sun Nuclear) and with 3D-Slicer.ResultsOn average, 87.9% ± 1.2% of voxels were found for DD2% (on average 27 slices available for each patient) and 94.6% ± 0.8% of points passed the 2D gamma analysis test while the 3D gamma test was satisfied in 94.8% ± 0.8% of body’s voxels.ConclusionsThis study represents the first demonstration of the dosimetric accuracy of kVCT-to-MVCT DIR for dose of the day computations. The suggested method is sufficiently fast and reliable to be used for daily delivered dose evaluations in clinical strategies for adaptive Tomotherapy of HN cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号