首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatitis C virus (HCV) infects hepatocytes after binding to heparan sulfate proteoglycans, in particular Syndecan‐1, followed by recognition of the tetraspanin CD81 and other receptors. Heparan sulfate proteoglycans are found in a specific microenvironment coating the hepatocyte surface called the glycocalyx and are receptors for extracellular matrix proteins, cytokines, growth factors, lipoproteins, and infectious agents. We investigated the mutual influence of HCV infection on the glycocalyx and revealed new links between Syndecan‐1 and CD81. Hepatocyte infection by HCV was inhibited after knocking down Syndecan‐1 or Xylosyltransferase 2, a key enzyme of Syndecan‐1 biosynthesis. Simultaneous knockdown of Syndecan‐1 and CD81 strongly inhibited infection, suggesting their cooperative action. At early infection stages, Syndecan‐1 and virions colocalized at the plasma membrane and were internalized in endosomes. Direct interactions between Syndecan‐1 and CD81 were revealed in primary and transformed hepatocytes by immunoprecipitation and proximity ligation assays. Expression of Syndecan‐1 and Xylosyltransferase 2 was altered within days post‐infection, and the remaining Syndecan‐1 pool colocalized poorly with CD81. The data indicate a profound reshuffling of the hepatocyte glycocalyx during HCV infection, possibly required for establishing optimal conditions of viral propagation.  相似文献   

2.
The effect of ischemic preconditioning and superoxide dismutase (SOD) on endothelial glycocalyx and endothelium-dependent vasodilation in the postischemic isolated guinea-pig hearts was examined. Seven groups of hearts were used: group 1 underwent sham aerobic perfusion; group 2 was subjected to 40 min global ischemia without reperfusion; group 3, 40 min ischemia followed by 40 min reperfusion; group 4 was preconditioned with three cycles of 5 min global ischemia followed by 5 min of reperfusion (IPC), prior to 40 min ischemia; group 5 was subjected to IPC prior to standard ischemia/reperfusion; group 6 underwent standard ischemia/reperfusion and SOD infusion (150 U/ml) was begun 5 min before 40 min ischemia and continued during the initial 5 min of the reperfusion period; group 7 was subjected to 80 min aerobic perfusion with NO-synthase inhibitor, L-NAME, to produce a model of endothelial dysfunction independent from the ischemia/reperfusion. Coronary flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were used as measures of endothelium-dependent and endothelium-independent vascular function, respectively. Reduction in coronary flow caused by NO-synthase inhibitor, L-NAME, served as a measure of a basal endothelium-dependent vasodilator tone. After completion of each experimental protocol, the hearts were stained with ruthenium red or lanthanum chloride for electron microscopy evaluation of the endothelial glycocalyx. While ischemia led only to a slightly flocculent appearance of the glycocalyx, in ischemia/reperfused hearts the glycocalyx was disrupted, suggesting that it is the reperfusion injury which leads to the glycocalyx injury. Moreover, the coronary flow responses to ACh and L-NAME were impaired, while the responses to SNP were unchanged in the ischemia/reperfused hearts. The disruption of the glycocalyx and the deterioration of ACh and L-NAME responses was prevented by IPC. In addition, the alterations in the glycocalyx and the impairment of ACh responses were prevented by SOD. The glycocalyx appeared to be not changed in the hearts subjected to 80 min aerobic perfusion with L-NAME. In conclusion: (1) the impairment of the endothelium-dependent coronary vasodilation is paralleled by the endothelial glycocalyx disruption in the postischemic guinea-pig hearts; (2) both these changes are prevented by SOD, suggesting the role of free radicals in the mechanism of their development; (3) both changes are prevented by IPC. We hypothesize, therefore, that alterations in the glycocalyx contribute to the mechanism of the endothelial dysfunction in the postischemic hearts.  相似文献   

3.
4.
The six mammalian glycosaminoglycans (GAGs), chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate, hyaluronan, and keratan sulfate, are linear polysaccharides. Except for hyaluronan, they are sulfated to various extent, and covalently attached to proteins to form proteoglycans. GAGs interact with growth factors, morphogens, chemokines, extracellular matrix proteins and their bioactive fragments, receptors, lipoproteins, and pathogens. These interactions mediate their functions, from embryonic development to extracellular matrix assembly and regulation of cell signaling in various physiological and pathological contexts such as angiogenesis, cancer, neurodegenerative diseases, and infections. We give an overview of GAG–protein interactions (i.e., specificity and chemical features of GAG- and protein-binding sequences), and review the available GAG–protein interaction networks. We also provide the first comprehensive draft of the GAG interactome composed of 832 biomolecules (827 proteins and five GAGs) and 932 protein–GAG interactions. This network is a scaffold, which in the future should integrate structures of GAG–protein complexes, quantitative data of the abundance of GAGs in tissues to build tissue-specific interactomes, and GAG interactions with metal ions such as calcium, which plays a major role in the assembly of the extracellular matrix and its interactions with cells. This contextualized interactome will be useful to identify druggable GAG–protein interactions for therapeutic purpose:  相似文献   

5.
Despite the ubiquitous presence of basic fibroblast growth factor (bFGF) in normal tissues, endothelial cell proliferation in these tissues is usually very low, suggesting that bFGF is somehow sequestered from its site of action. Immunohistochemical staining revealed the localization of bFGF in basement membranes of diverse tissues, suggesting that the extracellular matrix (ECM) may serve as a reservoir for bFGF. Moreover, functional studies indicated that bFGF is an ECM component required for supporting endothelial cell proliferation and neuronal differentiation. We have found that bFGF is bound to heparan sulfate (HS) in the ECM and is released in an active form when the ECM-HS is degraded by heparanase expressed by normal and malignant cells (i.e. platelets, neutrophils, lymphoma cells). It is proposed that restriction of bFGF bioavailability by binding to ECM and local regulation of its release provide a novel mechanism for neovascularization in normal and pathological situations. The subendothelial ECM contains also tissue type- and urokinase type-plasminogen activators which participate in cell invasion and tissue remodeling. These results and studies on the properties of other ECM-immobilized enzymes (i.e. thrombin, plasmin, lipoprotein lipase) and growth factors (GM-CSF, IL-3, osteogenin), suggest that the ECM provides a storage depot for biologically active molecules which are thereby stabilized and protected. This may allow a more localized and persistent mode of action, as compared to the same molecules in a fluid phase.  相似文献   

6.
The second Ig module (IgII) of the neural cell adhesion molecule (NCAM) is known to bind to the first Ig module (IgI) of NCAM (so-called homophilic binding) and to interact with heparan sulfate and chondroitin sulfate glycoconjugates. We here show by NMR that the heparin and chondroitin sulfate-binding sites (HBS and CBS, respectively) in IgII coincide, and that this site overlaps with the homophilic binding site. Using NMR and surface plasmon resonance (SPR) analyses we demonstrate that interaction between IgII and heparin indeed interferes with the homophilic interaction between IgI and IgII. Accordingly, we show that treatment of cerebellar granule neurons (CGNs) with heparin inhibits NCAM-mediated outgrowth. In contrast, treatment with heparinase III or chondroitinase ABC abrogates NCAM-mediated neurite outgrowth in CGNs emphasizing the importance of the presence of heparan/chondroitin sulfates for proper NCAM function. Finally, a peptide encompassing HBS in IgII, termed the heparin-binding peptide (HBP), is shown to promote neurite outgrowth in CGNs. These observations indicate that neuronal differentiation induced by homophilic NCAM interaction is modulated by interactions with heparan/chondroitin sulfates.  相似文献   

7.
To quantitatively investigate the role of the endothelial glycocalyx layer (EGL) in protecting the artery from excessive infiltration of atherogenic lipids such as low density lipoproteins (LDLs), a multilayer model with the EGL of an arterial segment was developed to numerically simulate the flow and the transport of LDLs under normal and high pressure. The transport parameters of the layers of the model were obtained from the hydrodynamic theory, the stochastic theory, and from the literature. The results showed that the increase in the thickness of the EGL could lead to a sharp drop in LDL accumulation in the intima. A partial damage to the EGL could compromise its barrier function, hence leading to enhanced infiltration/accumulation of LDLs within the wall of the arterial model. Without the EGL, hypertension could lead to a significantly enhanced LDL transport into the wall of the model. However, the intact EGL could protect the arterial wall from hypertension so that the LDL concentration in the intima layer was almost the same as that under normal pressure conditions. The results also showed that LDL concentration within the arterial wall increased with Φ (the fraction of leaky junctions) on the intima layer. The increase in LDL concentration with Φ was much more dramatic for the model without the EGL. For instance, without the EGL, a Φ of 0.0005 could lead LDL concentration within the arterial wall to be even higher than that predicted for the EGL intact model with a Φ of 0.002. In conclusion, an intact EGL with a sufficient thickness may act as a barrier to LDL infiltration into the arterial wall and has the potential to suppress the hypertension-driven hike of LDL infiltration/accumulation in the arterial wall.  相似文献   

8.
Endothelial glycocalyx (EG) is a carbohydrate-rich layer which lines the lumen side of blood vessel walls. The EG layer is directly exposed to blood flow. The unique physiological location and its strongly coupled interaction with blood flow allow the EG layer to modulate microvascular mass transport and to sense and transmit mechanical signals from the passing blood. Molecular dynamics (MD) simulation is a computational method which focuses on atomic/molecular behavior at the microscale. The last two decades have witnessed a substantial increase in number and a broadening in scope regarding applications of MD in a wide spectrum of areas, including EG-related research. In this mini-review, MD works which solve EG-related problems and provide new insights into the functionality of EG are considered. Challenges of the MD method in EG research are articulated, and the future of MD in solving EG-related problems is also evaluated.  相似文献   

9.
Evidence suggests that endothelial cell layer heparan sulfate proteoglycans include a variety of different sized molecules which most likely contain different protein cores. In the present report, approximately half of endothelial cell surface associated heparan sulfate proteoglycan is shown to be releasable with soluble heparin. The remaining cell surface heparan sulfate proteoglycan, as well as extracellular matrix heparan sulfate proteoglycan, cannot be removed from the cells with heparin. The heparin nonreleasable cell surface proteoglycan can be released by membrane disrupting agents and is able to intercalate into liposomes. When the heparin releasable and nonreleasable cell surface heparan sulfate proteoglycans are compared, differences in proteoglycan size are also evident. Furthermore, the intact heparin releasable heparan sulfate proteoglycan is closer in size to proteoglycans isolated from the extracellular matrix and from growth medium than to that which is heparin nonreleasable. These data indicate that cultured porcine aortic endothelial cells contain at least two distinct types of cell surface heparan sulfate proteoglycans, one of which appears to be associated with the cells through its glycosaminoglycan chains. The other (which is more tightly associated) is probably linked via a membrane intercalated protein core.Abbreviations ECM extracellular matrix - HSPG heparan sulfate proteoglycan - PAE porcine aortic endothelial - PBS phosphate buffered saline  相似文献   

10.
Heparan sulfate proteoglycans are ubiquitously located on cell surfaces and in the extracellular matrices. The negatively charged heparan sulfate chains interact with a multitude of different proteins, thereby influencing a variety of cellular and developmental processes, for example cell adhesion, migration, tissue morphogenesis, and differentiation. The human exostosin (EXT) family of genes contains five members: the heparan sulfate polymerizing enzymes, EXT1 and EXT2, and three EXT-like genes, EXTL1, EXTL2, and EXTL3. EXTL2 has been ascribed activities related to the initiation and termination of heparan sulfate chains. Here we further investigated the role of EXTL2 in heparan sulfate chain elongation by gene silencing and overexpression strategies. We found that siRNA-mediated knockdown of EXTL2 in human embryonic kidney 293 cells resulted in increased chain length, whereas overexpression of EXTL2 in the same cell line had little or no effect on heparan sulfate chain length. To study in more detail the role of EXTL2 in heparan sulfate chain elongation, we tested the ability of the overexpressed protein to catalyze the in vitro incorporation of N-acetylglucosamine and N-acetylgalactosamine to oligosaccharide acceptors resembling unmodified heparan sulfate and chondroitin sulfate precursor molecules. Analysis of the generated products revealed that recombinant EXTL2 showed weak ability to transfer N-acetylgalactosamine to heparan sulfate precursor molecules but also, that EXTL2 exhibited much stronger in vitro N-acetylglucosamine-transferase activity related to elongation of heparan sulfate chains.  相似文献   

11.
12.
The glycosaminoglycan microenvironment of testicular hyaluronidase was simulated by multipoint covalent attachment of the enzyme to glycans as a result of benzoquinone activation. The efficiency of their binding was assessed using gel chromatography, ultrafiltration, titration of surface amino groups of the enzyme, electrophoresis, as well as judging by the value of residual endoglycosidase activity and its inhibition with heparin. Copolymer glycosaminoglycans, such as dermatan sulfate and heparin, inactivated the endoglycosidase activity as a result the C-5 epimerization of hexuronic acid. It was shown that glucuronic acid and, to a lesser extent, N-acetylglucosamine determine the specificity of hyaluronidase. The chondroitin-sulfate microenvironment made the enzyme resistant to heparin inhibition because the equatorial orientation of the OH groups is similar to that in hyaluronic acid. Model experiments with dextran and dextran sulfate showed that sulfation of the glycan chain increased its rigidity, thus hampering the stabilizing effect on hyaluronidase. The effect of chondroitin sulfate on the endoglycosidase activity of hyaluronidase had additive character and did not directly affect the small fragment of the active site of the enzyme located at the bottom of a groove. The glycosaminoglycan microenvironment of hyaluronidase, containing an iduronic acid residue, the 1-3 and 1-4 glycosidic bond, inactivated the hyaluronidase activity of the enzyme, whereas simple polymers (such as gluco- and galactoaminoglycans) potentiated it due to a similar way of linking—(1e-4e) and (1e-3e). To understand the nature of these interactions in detail, the effect of oligomeric glycosaminoglycan fragments and their derivatives on hyaluronidase should be studied.  相似文献   

13.
The activity of ornithine decarboxylase, the key enzyme in the synthesis of polyamines, is essential for proliferation and differentiation of all living cells. Two inhibitors of ornithine decarboxylase, α-difluoromethylornithine (DFMO) and 1-aminooxy-3-aminopropane (APA), caused swelling of endoplasmic reticulum (ER) and medial and trans Golgi cisternae, and the disappearance of stress fibers, as visualized by staining with fluorescent concanavalin A (ConA), C6-NBD-ceramide or wheat germ agglutinin (WGA), and phalloidin, respectively. In contrast, the pattern of microtubules, stained with a β-tubulin antibody, was not affected. Rough ER seemed to be especially affected in polyamine deprivation forming whorls and involutions, which were observed by transmission electron microscopy. Since ER and Golgi apparatus are vital parts of the glycosylation and secretory machinery of the cell, we tested the ability of these structurally altered cell organelles to synthesize proteoglycans using [3H]glucosamine and [35S]sulfate as precursors. The total incorporation rate into proteoglycans and hyaluronan was not reduced in polyamine-deprived cells, suggesting that the total glycosylation capacity of cells was not affected. However, the synthesis of a high molecular weight proteoglycan containing chondroitin and keratan sulfate was completely inhibited. The remodeling of cytoskeleton and rough endoplasmic reticulum in polyamine deprivation may perturb the synthesis and secretion of the components of membrane skeleton and of the extracellular matrix, e.g., proteoglycans. Rough ER and cytoskeleton may be the targets where polyamines affect cell proliferation and differentiation. J. Cell Biochem. 66:165-174, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
Perineuronal nets (PNs) in the brains of tenascin-R-deficient (tn-r−/−) mice develop in temporal concordance with those of wild-type (tn-r+/+) mice. However, the histological appearance of PNs is abnormal in adult tn-r−/− mice. Here, we investigated whether similar defects are also seen in dissociated and organotypic cultures from hippocampus and forebrain of tn-r−/− mice and whether the structure of PNs could be normalized. In tn-r−/− cultures, accumulations of several extracellular matrix molecules were mostly associated with somata, whereas dendrites were sparsely covered, compared with tn-r+/+ mice. Experiments to normalize the structure of PNs in tn-r−/− organotypic slice cultures by depolarization of neurons, or by co-culturing tn-r+/+ and tn-r−/− brain slices failed to restore a normal PN phenotype. However, formation of dendritic PNs in cultures was improved by the application of tenascin-R protein and rescued by polyclonal antibodies to aggrecan and a bivalent, but not monovalent form of the lectin Wisteria floribunda agglutinin. These results show that tenascin-R and aggrecan are decisive contributors to formation and stabilization of PNs and that tenascin-R may implement these functions by clustering of aggrecan. Proposed approaches for restoration of normal PN structure are noteworthy in the context of PN abnormalities in neurological disorders, such as epilepsy, schizophrenia and addiction.  相似文献   

17.
Few prospective studies support the use of anticoagulation during the acute phase of ischemic stroke, though observational data suggest a role in certain populations. Depending on the mechanism of stroke, systemic anticoagulation may prevent recurrent cerebral infarction, but concomitantly carries a risk of hemorrhagic transformation. In this article, we describe a case where anticoagulation shows promise for ischemic stroke and review the evidence that has discredited its use in some circumstances while showing its potential in others.  相似文献   

18.
Stroke is a major cause of mortality and the leading cause of permanent disability. In this study, we adopted the classic middle cerebral artery occlusion(MCAO) stroke model to observe the therapeutic effects of coccomyxa gloeobotrydiformis(CGD) on ischemic stroke, and discuss the underlying mechanisms. Low dose (50 mg/kg.day) and high dose (100 mg/kg.day) concentrations of the drug CGD were intragastrically administrated separately for 8 weeks. Infarct volumes, neurologic deficits and degree of stroke-induced brain edema were measured 24 hours after reperfusion. Furthermore, oxidative stress related factors (SOD and MDA), mitochondrial membrane potential, and apoptosis regulatory factors (mitochondrial Cyt-C, Bcl-2, Bax, and caspase-3) were all investigated in this research. We found that CGD attenuated cerebral infarction, brain edema and neurologic deficits; CGD maintained the mitochondrial membrane potential and decreased mitochondrial swelling. It also prevented oxidative damage by reducing MDA and increasing SOD. In addition, CGD could effectively attenuate apoptosis by restoring the level of mitochondrial Cyt C and regulating the expression of Bcl-2, Bax and caspase 3. These results revealed that CGD has a therapeutic effect on ischemic stroke, possibly by inducing mitochondrial protection and anti-apoptotic mechanisms.  相似文献   

19.
20.
目的:分析脑栓通联合丁苯酞治疗急性缺血性脑卒中(AIS)的临床价值。方法:选取我院收治的104例AIS患者为研究对象,采用随机数字表法将其分为对照组及观察组,每组各52例。两组均给予抗血小板凝集、控制血压、降糖、调脂等基础治疗,对照组在基础治疗基础上给予丁苯酞治疗,观察组则在对照组基础上予以脑栓通治疗。记录和比较两组的临床疗效、不良反应的发生情况,治疗前及治疗2周后神经功能缺损程度[美国国立卫生研究院卒中量表(NIHSS)]、血清炎性因子[超敏C反应蛋白(hs-CRP)、白细胞介素-8(IL-8)]水平、氧化应激指标[脂质过氧化物(LPO)、甘胱甘肽过氧化物酶(GSH-Px)]、血流动力学指标[大脑中动脉(MCA)收缩期血流速度(Vs)、平均血液流速(Vm)]的变化。结果:治疗后,观察组临床总有效率为96.15%,明显高于对照组(P<0.05)。两组治疗期间并发症发生率比较差异无统计学意义(P>0.05)。治疗2周后,两组NIHSS评分、血清hs-CRP、IL-8、LPO水平均较治疗前显著降低(P<0.05),GSH-Px、MCA Vs和Vm则较治疗前明显升高(P<0.05),且观察组以上指标的变化明显优于对照组(P<0.05)。结论:脑栓通联合丁苯酞治疗AIS具有较好的疗效及较高的安全性,可减轻机体炎症反应与氧化应激反应,改善脑血流灌注及神经功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号