首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Our previous studies showed a down-regulation of GRIM-19 in primary human cervical cancers, and restoration of GRIM-19 induced tumor regression. The induction of tumor suppressor protein p53 ubiquitination and degradation by E6 oncoportein of high risk-HPV through forming a stable complex with E6AP is considered as a critical mechanism for cervical tumor development. The aims of this study were to determine the potential role of GRIM-19 in rescuing p53 protein and inducing cervical cancer cell apoptosis.

Methodology/Principal Findings

The protein levels of GRIM-19 and p53 were detected in normal cervical tissues from 45 patients who underwent hysterectomy for reasons other than neoplasias of either the cervix or endometrium, and cervical cancer tissues from 60 patients with non-metastatic squamous epithelial carcinomas. Coimmunoprecipitation and GST pull-down assay were performed to examine the interaction of GRIM-19 with 18E6 and E6AP in vivo and in vitro respectively. The competition of 18E6 with E6AP in binding GRIM-19 by performing competition pull-down assays was designed to examine the disruption of E6/E6AP complex by GRIM-19. The augment of E6AP ubiquitination by GRIM-19 was detected in vivo and in vitro ubiquitination assay. The effects of GRIM-19-dependent p53 accumulation on cell proliferation, cell cycle, apoptosis were explored by MTT, flow cytometry and transmission electron microscopy respectively. The tumor suppression was detected by xenograft mouse model.

Conclusion/Significance

The levels of GRIM-19 and p53 were concurrently down regulated in cervical cancers. The restoration of GRIM-19 can induce ubiquitination and degradation of E6AP, and disrupt the E6/E6AP complex through the interaction of N-terminus of GRIM-19 with both E6 and E6AP, which protected p53 from degradation and promoted cell apoptosis. Tumor xenograft studies also revealed the suppression of p53 degradation in presence of GRIM-19. These data suggest that GRIM-19 can block E6/E6AP complex; and synergistically suppress cervical tumor growth with p53.  相似文献   

2.
GRIM-19 (Gene associated with Retinoid-IFN-induced Mortality-19) was originally isolated as a growth suppressor in a genome-wide knockdown screen with antisense libraries. Like classical tumor suppressors, mutations, and/or loss of GRIM-19 expression occur in primary human tumors; and it is inactivated by viral gene products. Our search for potential GRIM-19-binding proteins, using mass spectrometry, that permit its antitumor actions led to the inhibitor of cyclin-dependent kinase 4, CDKN2A. The GRIM-19/CDKN2A synergistically suppressed cell cycle progression via inhibiting E2F1-driven gene expression. The N terminus of GRIM-19 and the fourth ankyrin repeat of CDKN2A are crucial for their interaction. The biological relevance of these interactions is underscored by observations that GRIM-19 promotes the inhibitory effect of CDKN2A on CDK4; and mutations from primary tumors disrupt its ability to interact with GRIM-19 and suppress E2F1-driven gene expression.  相似文献   

3.
Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), as a novel IFN-β/RA-inducible gene product, was identified as a potential tumor suppressor associated with growth inhibition and cell apoptosis. Recently, it has been reported that the apoptotic effects and apoptosis-related gene induction of GRIM-19 can be attenuated by GW112, indicating that GRIM-19 and GW112 are involved in a common signal transduction pathway. To investigate the signaling mechanisms that link GRIM-19 to GW112 and their functional role in tumor cell invasion and metastasis, we utilized adenovirus-mediated overexpression of GRIM-19 in the gastric cancer SGC-7901 cell line. We observed that enhanced expression of GRIM-19 not only downregulated GW112 but also decreased NF-кB binding activity. As a result, we found that tumor cell adhesion, migration, invasion and liver metastasis were inhibited. Additionally, upregulation of GRIM-19 also suppressed secretion of urokinase-type plasminogen activator (u-PA), matrix metalloproteinase (MMP)-2, 9 and vascular endothelial growth factor (VEGF). These results indicate that GRIM-19 acts as an upstream regulator of GW112 to block NF-кB binding activity, thereby inhibiting gastric cancer cell migration, invasion and metastasis. We conclude that adenoviral transfer of the GRIM-19 gene may be an efficacious approach to controlling the invasion and metastasis of human gastric cancer.  相似文献   

4.
We have recently isolated novel IFN-inducible gene, Gene associated with Retinoid-Interferon-induced Mortality-1 (GRIM-1), using a genetic technique. Moderate ectopic expression of GRIM-1 caused growth inhibition and sensitized cells to retinoic acid (RA)/IFN-induced cell death while high expression caused apoptosis. GRIM-1 depletion, using RNAi, conferred a growth advantage. Three protein isoforms (1α, 1β and 1γ) with identical C-termini are produced from GRIM-1 mRNA. We show that GRIM-1 isoforms interact with NAF1 and DKC1, two essential proteins required for box H/ACA sno/sca RNP biogenesis and suppresses box H/ACA RNA levels in mammalian cells by delocalizing NAF1. Suppression of these small RNAs manifests as inefficient rRNA maturation and growth suppression. Interestingly, yeast Shq1p also caused growth suppression in mammalian cells. Consistent with its growth-suppressive property, GRIM-1 expression is lost in a number of human primary prostate tumors. Our observations support a recent study that GRIM-1 might act as a co-tumor suppressor in the prostate.  相似文献   

5.
6.
7.
Genes associated with retinoid-interferon-induced mortality 19 (GRIM-19) was identified as a tumor suppressor protein associated with apoptosis and growth inhibition. Here, we report that the expression levels of GRIM-19 are significantly attenuated in hepatocellular carcinoma (HCC) patients with deteriorating differentiation states, hepatic capsule invasion and microvascular invasion, suggesting the potential role of GRIM-19 not only at the origin but also in the invasive progression of HCCs. To dissect the possible mechanisms by which GRIM-19 regulates tumor cell invasion, we established the hepatic HL-7702 and HCC Huh-7 cell lines stably depleted of GRIM-19. Results show that downregulation of GRIM-19 induces a morphological transformation resembling epithelial-mesenchymal transition (EMT) as well as aberrant expression of epithelial and mesenchymal molecular markers. Additionally, these cells lose contact inhibition, a phenomenon of cessation of cell migration in contact with neighboring cells, as assessed by cell imaging, growth curve and S-phase transition in confluent conditions. CONCLUSION: Our observations demonstrate a novel mechanistic insight into a critical role of GRIM-19 in HCC invasive potential.  相似文献   

8.
Gastric cancer is one of the most common malignancies, and radiation resistance is one of the key obstacles in gastric cancer treatment. In this study, we demonstrate that “genes associated retinoid–IFN induced mortality-19” (GRIM-19) expression was lower in patients with radiotherapy-resistant tumors compared to patients with radiotherapy-sensitive tumors. In order to further investigate the effects of GRIM-19 expression on the radiation response in gastric cancer cells, we established BGC-803 clones stably expressing exogenous GRIM-19. We found that the percentage of apoptotic cells was higher in cells expressing GRIM-19 than untransfected cells post-radiation treatment. Furthermore, caspase-3, -8, and -9 activity was significantly increased in GRIM-19-expressing cells compared to untransfected cells after radiation. Finally, we demonstrate that expression of GRIM-19 in BGC-803 cells suppresses accumulation of STAT3. Collectively, these data show that GRIM-19 expression sensitizes BGC-803 cells to radiation, and this is likely due to suppression of STAT3 accumulation. In summary, our results indicate that GRIM-19 expression might be a useful therapy to enhance apoptosis in gastric cancer cells in response to radiation treatment.  相似文献   

9.
Mitochondria play essential roles in cellular energy production via the oxidative phosphorylation system (OXPHOS) consisting of five multiprotein complexes and also in the initiation of apoptosis. NADH:ubiquinone oxidoreductase (complex I) is the largest complex that catalyzes the first step of electron transfer in the OXPHOS system. GRIM-19 was originally identified as a nuclear protein with apoptotic nature in interferon (IFN)- and all-trans-retinoic acid (RA)-induced tumor cells. To reveal its biological role, we generated mice deficient in GRIM-19 by gene targeting. Homologous deletion of GRIM-19 causes embryonic lethality at embryonic day 9.5. GRIM-19(-/-) blastocysts show retarded growth in vitro and, strikingly, display abnormal mitochondrial structure, morphology, and cellular distribution. We reexamined the cellular localization of GRIM-19 in various cell types and found its primary localization in the mitochondria. Furthermore, GRIM-19 is detected in the native form of mitochondrial complex I. Finally, we show that elimination of GRIM-19 destroys the assembly and electron transfer activity of complex I and also influences the other complexes in the mitochondrial respiratory chain. Our result demonstrates that GRIM-19, a gene product with a specific role in IFN-RA-induced cell death, is a functional component of mitochondrial complex I and is essential for early embryonic development.  相似文献   

10.
11.
We show here that the combination of interferon-beta (IFN-beta) and all-trans-retinoic acid (RA) induces the death of tumor cells. To understand the molecular basis for synergistic growth-suppressive action and to identify the gene products that participate in this process, we have employed an antisense knock-out technique. This approach permits the isolation of cell death-associated genes based on their selective inactivation by overexpression of antisense cDNAs. Because the antisense mRNA inactivates gene expression of death-specific genes, transfected cells survive in the presence death inducers. Several Genes associated with Retinoid-IFN-induced Mortality (GRIM) were identified using this approach. Here we report the isolation of a novel GRIM gene, GRIM-19. This 552-base pair cDNA encodes a 16-kDa protein. Antisense expression of GRIM-19 confers a strong resistance against IFN/RA-induced death by reducing the intracellular levels of GRIM-19 protein. Overexpression of GRIM-19 enhances cell death in response to IFN/RA. GRIM-19 is primarily a nuclear protein whose expression is induced by the IFN/RA combination. Together, our studies identify a novel cell death-regulatory molecule.  相似文献   

12.
13.
Recent studies indicated that Gene Associated with Retinoid-IFN-Induced Mortality 19 (GRIM-19), a newly discovered mitochondria-related protein, can regulate mitochondrial function and modulate cell viability possibly via interacting with STAT3 signal. In the present study we sought to test: 1) whether GRIM-19 is involved in high glucose (HG) induced altered cell metabolism in both cancer and cardiac cells, 2) whether GRIM-19/STAT3 signaling pathway plays a role in HG induced biological effects, especially whether AMPK activity could be involved. Our data showed that HG enhanced cell proliferation of both HeLa and H9C2 cells, which was closely associated with down-regulated GRIM-19 expression and increased phosphorylated STAT3 level. We showed that GRIM-19 knock-down alone in normal glucose cultured cells can also result in an increase in phosphorylated STAT3 level and enhanced proliferation capability, whereas GRIM-19 over-expression can abolished HG induced STAT3 activation and enhanced cell proliferation. Importantly, both down-regulated or over-expression of GRIM-19 increased lactate production in both HeLa and H9C2 cells. The activated STAT3 was responsible for increased cell proliferation as either AG-490, an inhibitor of JAK2, or siRNA targeting STAT3 can attenuate cell proliferation increased by HG. In addition, HG increased lactate acid levels in HeLa cells, which was also observed when GRIM-19 was genetically manipulated. However, HG did not affect the lactate levels in H9C2 cells. Of note, over-expression of GRIM-19 and silencing of STAT3 both increased lactate production in H9C2 cells. As expected, HG resulted in significant decreases in phosphorylated AMPKα levels in H9C2 cells, but not in HeLa cells. Interestingy, activation of AMPKα by metformin was associated with a reversal of the suppressed GRIM-19 expression in H9C2 cells, the fold of changes in GRIM-19 expression by metformin were much less in HeLa cells. Metformin did not affect the phosphorylated STAT3 lelvels, however, decreased its levels in H9C2, especially in the setting of HG culture. Not like HG alone which resulted in no changes in lactate acid in H9C2 cells, metformin can increase lactate acid levels in H9C2 cells. Increased lactate induced by metformin was also observed in HeLa cells.  相似文献   

14.
15.
16.
Nucleotide oligomerization domain 2 (NOD2) functions as a mammalian cytosolic pathogen recognition molecule, and variants have been associated with risk for Crohn disease. We recently demonstrated that NOD2 functions as an anti-bacterial factor limiting survival of intracellular invasive bacteria. To gain further insight into the mechanism of NOD2 activation and signal transduction, we performed yeast two-hybrid screening. We demonstrate that GRIM-19, a protein with homology to the NADPH dehydrogenase complex, interacts with endogenous NOD2 in HT29 cells. GRIM-19 is required for NF-kappaB activation following NOD2-mediated recognition of bacterial muramyl dipeptide. GRIM-19 also controls pathogen invasion of intestinal epithelial cells. GRIM-19 expression is decreased in inflamed mucosa of patients with inflammatory bowel diseases. GRIM-19 may be a key component in NOD2-mediated innate mucosal responses and serve to regulate intestinal epithelial cell responses to microbes.  相似文献   

17.
Angiogenesis inhibitors produced by a primary tumor can create a systemic anti-angiogenic environment and maintain metastatic tumor cells in a state of dormancy. We show here that the gallbladder microenvironment modulates the production of transforming growth factor (TGF)-beta1, a multifunctional cytokine that functions as an endogenous anti-angiogenic and anti-tumor factor in a cranial window preparation. We found that a wide variety of human gallbladder tumors express TGF-beta1 irrespective of histologic type. We implanted a gel impregnated with basic fibroblast growth factor or Mz-ChA-2 tumor in the cranial windows of mice without tumors or mice with subcutaneous or gallbladder tumors to study angiogenesis and tumor growth at a secondary site. Angiogenesis, leukocyte-endothelial interaction in vessels and tumor growth in the cranial window were substantially inhibited in mice with gallbladder tumors. The concentration of TGF-beta1 in the plasma of mice with gallbladder tumors was 300% higher than that in the plasma of mice without tumors or with subcutaneous tumors. In contrast, there was no difference in the plasma levels of other anti- and pro-angiogenic factors. Treatment with neutralizing antibody against TGF-beta1 reversed both angiogenesis suppression and inhibition of leukocyte rolling induced by gallbladder tumors. TGF-beta1 also inhibited Mz-ChA-2 tumor cell proliferation. Our results indicate that the production of anti-angiogenesis/proliferation factors is regulated by tumor-host interactions.  相似文献   

18.
A major function of p27, also known as Kip1, is to bind and inhibit cyclin/cyclin-dependent kinase complexes, thereby blocking cell cycle progression. As p27 operates at the heart of the cell cycle, it is perhaps not surprising that it is emerging as a key player in multiple cell fate decisions including proliferation, differentiation, and cell death. The central role of p27 makes it important in a variety of disease processes that involve aberrations in cellular proliferation and other cell fates. Most notable among these processes is neoplasia. A large number of studies have reported that p27 expression is frequently downregulated in human tumors. In most tumor types, reduced p27 expression correlates with poor prognosis, making p27 a novel and powerful prognostic marker. In addition to these practical implications, murine and tissue culture models have shown that p27 is a potent tumor suppressor gene for multiple epithelially derived neoplasias. Loss of p27 cooperates with mutations in several oncogenes and tumor suppressor genes to facilitate tumor growth, indicating that p27 may be a "nodal point" for tumor suppression. In contrast to most tumor suppressor genes studied to date, which are recessive at the cellular level, p27 is haploinsufficient for tumor suppression. The fact that tumor suppression by p27 is critically dependent on the absolute level of p27 expression indicates that p27 acts as a rheostat rather than as an on/off switch to control growth and neoplasia.  相似文献   

19.
Inactivation of the Rb-mediated G1 control pathway is a common event found in many types of human tumors. To test how the Rb pathway interacts with other pathways in tumor suppression, we characterized mice with mutations in both the cyclin-dependent kinase (CDK) inhibitor p18 Ink4c and the lipid phosphatase Pten, which regulates cell growth. The double mutant mice develop a wider spectrum of tumors, including prostate cancer in the anterior and dorsolateral lobes, with nearly complete penetrance and at an accelerated rate. The remaining wild-type allele of Pten was lost at a high frequency in Pten+/- cells but not in p18+/- Pten+/- or p18-/- Pten+/- prostate tumor cells, nor in other Pten+/- tumor cells, suggesting a tissue- and genetic background-dependent haploinsufficiency of Pten in tumor suppression. p18 deletion, CDK4 overexpression, or oncoviral inactivation of Rb family proteins caused activation of Akt/PKB that was recessive to the reduction of PTEN activity. We suggest that p18 and Pten cooperate in tumor suppression by constraining a positive regulatory loop between cell growth and cell cycle control pathways.  相似文献   

20.
Despite the fact that mitochondrial dysfunction has an important role in tumorigenesis and metastasis, the underlying mechanism remains to be elucidated. Mitochondrial Complex I (NADH:ubiquinone oxidoreductase) is the first and the largest protein complex of the mitochondrial electron-transport chain (ETC),which has an essential role in maintaining mitochondrial function and integrity. In this study, we separately knocked down two subunits of mitochondrial complex I, GRIM-19 or NDUFS3, and investigated their effects on metastatic behaviors and explored the possible mechanisms. Our data showed that stable down-modulation of GRIM-19 or NDUFS3 decreased complex I activity and reactive oxygen species (ROS) production; led to enhanced cell adhesion, migration, invasion, and spheroid formation; and influenced the expressions of extracellular matrix (ECM) molecules and its related proteins. We also observed that the expressions of GRIM-19, NDUFS3, and ECM elements were correlated with invasive capabilities of breast cancer cell lines. These results suggest that inhibition of complex I affects metastatic properties of cancer cells, and mitochondrial ROS might play a crucial role in these processes by regulating ECM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号