首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronatine (COR) is a non-host-specific phytotoxin that is produced by several different pathovars in the species Pseudomonas syringae. COR consists of two distinct components: coronafacic acid (CFA), which is synthesized via the polyketide pathway, and coronamic acid (CMA), a cyclized derivative of isoleucine. Both CFA and CMA function as intermediates in the pathway to COR and must be joined together by an amide bond to form the phytotoxin. Although the mode of action for COR remains obscure, the CFA moiety is a structural and functional analogue of jasmonic acid, a compound that is produced in a variety of plants in response to stress. The COR biosynthetic gene cluster generally occurs on large plasmids in P. syringae, an observation that helps to explain the production of COR by multiple pathovars. Mutagenesis, feeding studies, and complementation analyses have been used to divide the COR biosynthetic gene cluster into functional regions. Nucleotide sequencing of the regions involved in CFA and CMA biosynthesis has revealed relatedness to genes encoding polyketide and peptide synthetases, respectively. The deduced amino acid sequence of the gene responsible for catalyzing amide bond formation between CMA and CFA shows relatedness to enzymes that activate cyclic carboxylic acids by adenylation. Coronatine biosynthesis has been shown to be temperature-sensitive and regulated by a modified two-component regulatory system. Received: 12 February 1996 / Accepted: 8 May 1996  相似文献   

2.
Coronamic acid (CMA; 2-ethyl-1-aminocyclopropane 1-carboxylic acid) is an intermediate in the biosynthesis of coronatine (COR), a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. Tn5 mutagenesis and substrate feeding studies were previously used to characterize regions of the COR biosynthetic gene cluster required for synthesis of coronafacic acid and CMA, which are the only two characterized intermediates in the COR biosynthetic pathway. In the present study, additional Tn5 insertions were generated to more precisely define the region required for CMA biosynthesis. A new analytical method for CMA detection which involves derivatization with phenylisothiocyanate and detection by high-performance liquid chromatography (HPLC) was developed. This method was used to analyze and quantify the production of CMA by selected derivatives of P. syringae pv. glycinea which contained mutagenized or cloned regions from the CMA biosynthetic region. pMU2, a clone containing a 6.45-kb insert from the CMA region, genetically complemented mutants which required CMA for COR production. When pMU2 was introduced into P. syringae pv. glycinea 18a/90 (a strain which does not synthesize COR or its intermediates), CMA was not produced, indicating that pMU2 does not contain the complete CMA biosynthetic gene cluster. However, when two plasmid constructs designated pMU234 (12.5 kb) and pKTX30 (3.0 kb) were cointroduced into 18a/90, CMA was detected in culture supernatants by thin-layer chromatography and HPLC. The biological activity of the CMA produced by P. syringae pv. glycinea 18a/90 derivatives was demonstrated by the production of COR in cosynthesis experiments in which 18a/90 transconjugants were cocultivated with CMA-requiring mutants of P. syringae pv. glycinea PG4180. CMA production was also obtained when pMU234 and pKTX30 were cointroduced into P. syringae pv. syringae B1; however, these two constructs did not enable Escherichia coli K-12 to synthesize CMA. The production of CMA in P. syringae strains which lack the COR biosynthetic gene cluster indicates that CMA production can occur independently of coronafacic acid biosynthesis and raises interesting questions regarding the evolutionary origin of the COR biosynthetic pathway.  相似文献   

3.
Coronatine (COR) is a structural and functional analogue of jasmonic acid that might be employed in agriculture to elicit plant resistance against various aggressors. However, the yield of COR is low both in chemosynthesis and biosynthesis, so broad investigation of COR is difficult. Coronatine combines two distinct components: coronafacic acid (CFA) and coronamic acid (CMA). Synthesis of both CMA and CFA is involved in l-isoleucine metabolism, so the objective of this work was to investigate if COR production can be improved by regulating amino acid biosynthesis in P. syringae pv. glycinea. Inhibition of dihydrodipicolinate synthase was achieved by removing the dapA gene via homologous recombination, which resulted in a COR yield by the dapA mutant of about 1.5-fold greater than the wild strain. Thus, regulation of amino acid metabolism is a feasible way to increase COR production, which could be a more effective method than adding substrates into culture medium.  相似文献   

4.
5.
Coronafacoyl phytotoxins are secondary metabolites that are produced by various phytopathogenic bacteria, including several pathovars of the Gram‐negative bacterium Pseudomonas syringae as well as the Gram‐positive potato scab pathogen Streptomyces scabies. The phytotoxins are composed of the polyketide coronafacic acid (CFA) linked via an amide bond to amino acids or amino acid derivatives, and their biosynthesis involves the cfa and cfa‐like gene clusters that are found in P. syringae and S. scabies, respectively. The S. scabies cfa‐like gene cluster was previously reported to contain several genes that are absent from the P. syringae cfa gene cluster, including one (oxr) encoding a putative F420—dependent oxidoreductase, and another (sdr) encoding a predicted short‐chain dehydrogenase/reductase. Using gene deletion analysis, we demonstrated that both oxr and sdr are required for normal production of the S. scabies coronafacoyl phytotoxins, and structural analysis of metabolites that accumulated in the Δsdr mutant cultures revealed that Sdr is directly involved in the biosynthesis of the CFA moiety. Our results suggest that S. scabies and P. syringae use distinct biosynthetic pathways for producing coronafacoyl phytotoxins, which are important mediators of host‐pathogen interactions in various plant pathosystems.  相似文献   

6.
7.
8.
Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.  相似文献   

9.
Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.  相似文献   

10.
Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll.  相似文献   

11.
Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase.  相似文献   

12.
Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.  相似文献   

13.
Many Pseudomonas syringae strains contain native plasmids that are important for host-pathogen interactions, and most of them contain several coexisting plasmids (pPT23A-like plasmids) that cross-hybridize to replication sequences from pPT23A, which also carries a gene cluster coding for the phytotoxin coronatine in P. syringae pv. tomato PT23. In this study, three functional pPT23A-like replicons were cloned from P. syringae pv. glycinea race 6, suggesting that the compatibility of highly related replicons is a common feature of P. syringae strains. Hybridization experiments using three separate incompatibility determinants previously identified from pPT23A and the rulAB (UV radiation tolerance) genes showed that the organization of the replication region among pPT23A-like plasmids from several P. syringae pathovars is poorly conserved. The putative repA gene from four pPT23A-like replicons from P. syringae pv. glycinea race 6 was amplified by using specific primers. The restriction profiles of the resulting PCR products for the race 6 plasmids were more similar to each other than they were to that of pPT23A. These data, together with the existence of other cross-hybridizing DNA regions around the replicon among the race 6 pPT23A-like plasmids, suggest that some of these plasmids may have originated from duplication events. Our results also imply that modifications of the repA sequences and the poor conservation of putative maintenance determinants contribute to the suppression of incompatibility among members of the pPT23A-like family, thus enhancing the genomic plasticity of P. syringae.  相似文献   

14.
15.
The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces the rare amino acid 3-methylarginine (MeArg), which is highly active against the closely related soybean pathogen Pseudomonas syringae pv. glycinea. Since these pathogens compete for the same habitat, Pss22d is a promising candidate for biocontrol of P. syringae pv. glycinea. The MeArg biosynthesis gene cluster codes for the S-adenosylmethionine (SAM)-dependent methyltransferase MrsA, the putative aminotransferase MrsB, and the amino acid exporter MrsC. Transfer of the whole gene cluster into Escherichia coli resulted in heterologous production of MeArg. The methyltransferase MrsA was overexpressed in E. coli as a His-tagged protein and functionally characterized (Km, 7 mM; kcat, 85 min−1). The highly selective methyltransferase MrsA transfers the methyl group from SAM into 5-guanidino-2-oxo-pentanoic acid to yield 5-guanidino-3-methyl-2-oxo-pentanoic acid, which then only needs to be transaminated to result in the antibiotic MeArg.Microbial plant pathogens cause severe losses in agriculture each year (1). For example, the plant pathogen Pseudomonas syringae pv. glycinea is responsible for bacterial blight of soybean, a leaf spot disease of great economic impact. Besides chemical treatment, biocontrol agents that antagonize microbial plant pathogens are gaining increasing importance in fighting plant diseases (6, 11, 27). In a screening for possible biocontrol strains, an epiphytic bacterium showing a strong and selective activity against the pathogen P. syringae pv. glycinea was isolated from soybean leaves (29). The strain was characterized as Pseudomonas syringae pv. syringae 22d/93 (Pss22d). The antagonism of Pss22d against P. syringae pv. glycinea has been demonstrated successfully in vitro and in planta under greenhouse and field conditions (19, 29). In order to identify the molecular basis of the antagonism of Pss22d against P. syringae pv. glycinea, we focused on its secondary metabolites. Besides the well-known lipodepsipeptides syringomycin and syringopeptin (3), Pss22d produces the rare amino acid 3-methylarginine (MeArg) (5). As little as 20 nmol of MeArg strongly and selectively inhibits P. syringae pv. glycinea but no other pseudomonads in vitro (29). Since the inhibition can be compensated for by l-arginine supplementation but not by any other essential amino acid, it is likely that the toxin acts as an inhibitor of the arginine biosynthesis pathway or an arginine-dependent pathway, such as nitric oxide formation (13, 16). Feeding experiments and Tn5 transposon mutagenesis suggested that MeArg is produced by an S-adenosyl methionine (SAM)-dependent methyltransferase (5) converting the enol of 5-guanidino-2-oxo-pentanoic acid to 5-guanidino-3-methyl-2-oxo-pentanoic acid. An analogous reaction is known to occur with the methyltransferases GlmT, DptI, and LptI, which form 3-methylglutamate from α-ketoglutarate (18). On the way to MeArg, only a transaminase catalyzing the formation of MeArg from 5-guanidino-3-methyl-2-oxo-pentanoic acid and an amino acid exporter to secrete the toxin would be needed.Here, we describe the identification and functional characterization of the MeArg biosynthesis gene cluster from the epiphyte Pss22d.  相似文献   

16.
Nocamycins belong to the tetramic acid family natural products and show potent antimicrobial activity. Recently, the biosynthetic gene cluster of nocamycin was identified from the rare actinomycete Saccharothrix syringae and an S-adenosylmethionine (SAM) dependent methyltransferase gene NcmP was found to be located within the gene cluster. In this report, the methyltransferase gene NcmP was disrupted and a new nocamycin intermediate nocamycin E was isolated from the mutant strain. Meanwhile, NcmP was heterologously expressed in Escherichia coli BL21 (DE3) and biochemically characterized as a carboxylate O-methyltransferase in nocamycin biosynthetic pathway. Compared to nocamycin I, nocamycin E showed inferior antibacterial activity, indicating the methyl group is essential to antibacterial activity.  相似文献   

17.
18.

Background

Agrobacterium tumefaciens strain GV3101 (pMP90) is widely used in transient gene expression assays, including assays to study pathogen effectors and plant disease resistance mechanisms. However, inoculation of A. tumefaciens GV3101 into Nicotiana tabacum (tobacco) leaves prior to infiltration with pathogenic and non-host strains of Pseudomonas syringae results in suppression of macroscopic symptoms when compared with leaves pre-treated with a buffer control.

Methodology/Findings

To gain further insight into the mechanistic basis of symptom suppression by A. tumefaciens we examined the effect of pre-treatment with A. tumefaciens on the growth of P. syringae, the production of the plant signalling molecules salicylic acid (SA) and abscisic acid (ABA), and the presence of callose deposits. Pre-treatment with A. tumefaciens reduced ABA levels, P. syringae multiplication and P. syringae-elicited SA and ABA production, but promoted increased callose deposition. However, pre-treatment with A. tumefaciens did not suppress necrosis or SA production in leaves inoculated with the elicitor HrpZ.

Conclusions/Significance

Collectively, these results show that inoculation of N. tabacum leaves with A. tumefaciens alters plant hormone levels and plant defence responses to P. syringae, and demonstrate that researchers should consider the impact of A. tumefaciens on plant signal transduction when using A. tumefaciens-mediated transient expression assays to investigate ABA-regulated processes or pathogenicity and plant defence mechanisms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号