首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dendrochronologia》2014,32(2):113-119
Most subtropical forests in South America are located in regions with a marked seasonality in precipitation, which may induce the formation of annual bands in woody species. Due to the lack of precise information on tree-ring visibility, we evaluated the wood characteristics of 37 tree species in the subtropical Yungas and Chaco forests from northwestern (NW) Argentina. Anatomical features associated with the delimitation of growth bands were examined to establish the presence of tree rings. Different forest types reflect the precipitation gradients and wood anatomical features vary accordingly. Characteristics of wood structure are closely related to the dominant climatic patterns of each forest, revealing a common pattern of anatomical arrangements in terms of water transport and safety. In the Chaco and transitional forests, ring boundaries are related to marginal parenchyma whereas in montane forests growth ring boundary is mostly associated with the presence of thicker fibers at the end of the ring. The largest proportion of species with clearly marked growth rings occurs in the montane forest type of NW Argentina. Clear growth rings is a requisite for dendrochronological applications, hence the present work represents the first regional attempt to address the potential of subtropical species in South America to be used in dendrochronological studies.  相似文献   

2.
云南小中甸地区丽江云杉径向生长对气候变化的响应   总被引:4,自引:0,他引:4  
丽江云杉原始林是云南省香格里拉县小中甸地区的主要森林类型.本文采用树轮年代学的方法分析了丽江云杉年轮宽度对气候变化的响应;选取相对保守的结果负指数曲线或线性回归拟合生长趋势建立年表,进行了不同时间尺度的气候因素与差值年表(RES)序列的相关及响应函数分析,并利用特征年分析了产生宽窄年轮的原因.结果表明:研究区丽江云杉的径向生长与温度升高在1990-2008年存在一定的“分离现象”;上一生长季的水热状况是限制丽江云杉当年生长的主要气候因子,特别是上年7月的气温对当年径向生长具有负反馈作用,而上年7月的充足降水则促进当年的径向生长;上年生长季温度与降水变化的相反趋势是导致宽窄年轮形成的主要原因;丽江云杉的生长对帕尔默干旱指数(PDSI)的变化不敏感.  相似文献   

3.
Basic knowledge of the relationships between tree growth and environmental variables is crucial for understanding forest dynamics and predicting vegetation responses to climate variations. Trees growing in tropical areas with a clear seasonality in rainfall often form annual growth rings. In the understory, however, tree growth is supposed to be mainly affected by interference for access to light and other resources. In the semi-deciduous Mayombe forest of the Democratic Republic of Congo, the evergreen species Aidia ochroleuca, Corynanthe paniculata and Xylopia wilwerthii dominate the understory. We studied their wood to determine whether they form annual growth rings in response to changing climate conditions. Distinct growth rings were proved to be annual and triggered by a common external factor for the three species. Species-specific site chronologies were thus constructed from the cross-dated individual growth-ring series. Correlation analysis with climatic variables revealed that annual radial stem growth is positively related to precipitation during the rainy season but at different months. The growth was found to associate with precipitation during the early rainy season for Aidia but at the end of the rainy season for Corynanthe and Xylopia. Our results suggest that a dendrochronological approach allows the understanding of climate–growth relationships in tropical forests, not only for canopy trees but also for evergreen understory species and thus arguably for the whole tree community. Global climate change influences climatic seasonality in tropical forest areas, which is likely to result in differential responses across species with a possible effect on forest composition over time.  相似文献   

4.
Extremely decay-resistant wood and fire-resistant bark allow California’s redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have numerous scientific applications, including determination of tree ages, accurate dating of fire-return intervals, archaeology, analyses of stable isotopes, long-term climate reconstructions, and quantifying rates of carbon sequestration.  相似文献   

5.
In the subalpine forest zone, snow avalanches are potentially stand-devastating disturbances. Historical data regarding past avalanches in Argentina are scarce, but sufficiently old trees can show signs of past avalanche episodes that can be accurately dated using dendrochronological methods. Tree-ring analysis has not yet been used for dating avalanches in Tierra del Fuego, even though these disturbances are important to the dynamics of these southern forests. In this study, we evaluated the quality of Nothofagus pumilio for dating the avalanche that took place in the Martial Valley in 1976. Tree-ring data, complemented with vegetation analysis, was used to study the avalanche path. The dendrochronological study consisted of the analysis of wood samples taken from living trees located on the boundary between the undisturbed forest and the avalanche path. The vegetation analysis compared the forest structure within the avalanche path with the unaffected nearby forest. Wood scars and the abrupt increase in tree growth confirmed the occurrence of an avalanche event in 1976 in the Martial Valley of Tierra del Fuego, Argentina. The vegetation structure within the avalanche path was considerably different than that of the undisturbed forest. We found an important relationship between sapling abundance within the avalanche path and their distance from the undisturbed forest and their altitudinal position. The dendrochronological dating obtained in this research confirmed that the techniques and methodology used for N. pumilio in this study can be successfully applied for dating other avalanches that lack historical information.  相似文献   

6.
Tree growth sensitivity to climate can vary over space and time. This variability generates inconsistency in growth response to climate, which makes it difficult to assess the effects of past climate and global climate change on tree growth. A previous short-term study of Pseudopiptadenia contorta found a consistent growth response to climate in distinct locations, which raises the question, is the growth response of P. contorta to climate consistent over the long-term? We aimed to assess whether there is a common pattern of variation in tree-ring width, build tree-ring width chronologies, and verify the consistency of the climate-growth response of P. contorta in two Atlantic Forest remnants. Wood samples were collected in Reserva Biológica de Poço das Antas (RBPA) and Reserva Biológica de Tinguá (RBT) in the state of Rio de Janeiro, Brazil. Conventional dendrochronology methods were used for cross-dating, to build chronologies and to assess the climate-growth relationship. A common growth pattern was detected for P. contorta, and two tree-ring width chronologies were constructed. A congruent growth response was found for trees of RBPA and RBT to annual and spring precipitation as well as precipitation in the rainy months. Other climate-growth relationships were detected with other precipitation and temperature variables. Considering that P. contorta is a widespread species, occurring in other Brazilian biomes and forest formations, it is a promising model for developing further dendrochronological research including regional networks of replicated site chronologies, which could facilitate the reconstruction of historical climatic series and predictions of future impacts of climate change in tropical areas.  相似文献   

7.
8.
Tropical dry forests (TDF) are highly important tropical forest ecosystems. Yet, these forests are highly threatened, usually neglected and only poorly studied. Understanding the long-term influences of environmental conditions on tree growth in these forests is crucial to understand the functioning, carbon dynamics and potential responses to future climate change of these forests. Dendrochronology can be used as a tool to provide these insights but has only scantly been applied in (dry) tropical forests. Here we evaluate the dendrochronological potential of four Caatinga neotropical dry forest tree species – Aspidosperma pyrifolium, Ziziphus joazeiro, Tabebuia aurea, and Libidibia ferrea – collected in two locations in northeastern Brazil (Sergipe state). We provide an anatomical characterization of the ring boundaries for the four species and investigate correlations of their growth with local and regional climatic variables. All four species form annual rings and show high inter-correlation (up to 0.806) and sensitivity (up to 0.565). Growth of all species correlated with local precipitation as well as with sea-surface temperatures in the tropical Atlantic and/or tropical Pacific oceans. We also show teleconnections between growth and the El Niño South Oscillation. The strong dependence of tree on precipitation is worrisome, considering that climate change scenarios forecast increased drought conditions in the Caatinga dry forest. Including more species and expanding dendrochronological studies to more areas would greatly improve our understanding of tree growth and functioning in TDFs. This type of knowledge is essential to assist the conservation, management and restoration of these critical tropical ecosystems.  相似文献   

9.
There is great concern about the effect of climate change in arid and subarid areas of the tropics. Climate change combined with other anthropogenic activities such as deforestation, fires and over-grazing can accelerate their degradation and, consequently, the increases in losses of biological and economic productivity. Climate models, both local and global, predict that rainfall in the arid Peninsula of La Guajira in the Colombian Caribbean would be reduced and temperature would be increased as a result of climate change. However, as there are only suitable climate records since 1972, it is not possible to verify if, indeed, this is happening. To try to verify the hypothesis of reducing rainfall and rising temperatures we developed a growth ring chronology of Capparis odoratissima in the Middle Peninsula of La Guajira with 17 trees and 45 series which attain 48 years back. We use standard dendrochronological methods that showed statistically significant linear relationship with local climatic variables such as air temperature, sea surface temperature (SST), annual precipitation and wind speed; we also reach to successful relationship of the chronology with global climatic variables as the indices SOI and MEI of the ENSO phenomenon. The transfer functions estimated with the time series (1955 and 2003) do not showed statistically significant trends, indicating that during this period of time the annual precipitation or temperatures have not changed. The annual nature of C. odoratissima growth rings, the possibility of cross-dated among the samples of this species, and the high correlation with local and global climatic variables indicate a high potential of this species for dendrochronological studies in this part of the American continent.  相似文献   

10.
Aim Atmospheric CO2 concentrations depend, in part, on the amount of biomass locked up in terrestrial vegetation. Information on the causes of a broad‐scale vegetation transition and associated loss of biomass is thus of critical interest for understanding global palaeoclimatic changes. Pollen records from the north‐eastern Tibet‐Qinghai Plateau reveal a dramatic and extensive forest decline beginning c. 6000 cal. yr bp . The aim of this study is to elucidate the causes of this regional‐scale change from high‐biomass forest to low‐biomass steppe on the Tibet‐Qinghai Plateau during the second half of the Holocene. Location Our study focuses on the north‐eastern Tibet‐Qinghai Plateau. Stratigraphical data used are from Qinghai Lake (3200 m a.s.l., 36°32′–37°15′ N, 99°36′–100°47′ E). Methods We apply a modern pollen‐precipitation transfer function from the eastern and north‐eastern Tibet‐Qinghai Plateau to fossil pollen spectra from Qinghai Lake to reconstruct annual precipitation changes during the Holocene. The reconstructions are compared to a stable oxygen‐isotope record from the same sediment core and to results from two transient climate model simulations. Results The pollen‐based precipitation reconstruction covering the Holocene parallels moisture changes inferred from the stable oxygen‐isotope record. Furthermore, these results are in close agreement with simulated model‐based past annual precipitation changes. Main conclusions In the light of these data and the model results, we conclude that it is not necessary to attribute the broad‐scale forest decline to human activity. Climate change as a result of changes in the intensity of the East Asian Summer Monsoon in the mid‐Holocene is the most parsimonious explanation for the widespread forest decline on the Tibet‐Qinghai Plateau. Moreover, climate feedback from a reduced forest cover accentuates increasingly drier conditions in the area, indicating complex vegetation–climate interactions during this major ecological change.  相似文献   

11.
Aim Our aim was to investigate how the average life span of canopy leaves might be used to predict the geographical distribution of natural forests at large geographical scales, and to explore the link between leaf characteristics and ecosystem functioning. We examine whether there is a general relationship between canopy mean leaf life span and climate (i.e. temperature and precipitation) that can be used to predict evergreen forest zonation in China. Location Forest areas in China. Methods During July and August of 2002–2004, we conducted a latitudinal forest transect spanning about 30° of latitude in eastern China. The canopy mean leaf life span was calculated to include all tree species (groups) in each forest plot through weighted averages scaled up from branch‐level measurements. Data from our previous work conducted in the Tibetan Alpine Vegetation Transects (TAVT) and from other investigators were compiled to supplement our results. Based on regression equations developed on the pooled data, and using gridded temperature and precipitation datasets, we simulated the distribution of canopy mean leaf life span for forests in China. The predicted leaf life span zonation was compared with a map of Chinese forest vegetation divisions published in 1980. Results Canopy mean leaf life span across 10 evergreen forest plots in eastern China showed a decreasing trend as mean annual temperature increased, following a common logistic pattern consistent with the data from the TAVT and other investigators. In pooled data for 40 evergreen forest plots across tropical and boreal regions, canopy mean leaf life span generally showed a negative relationship with mean annual temperature (r2 = 0.72, P < 0.001), and a positive correlation with mean annual precipitation where mean annual temperature was > 8°C (r2 = 0.45, P < 0.01). The climate‐based simulations of leaf life span zonation compared well with the previously published boundaries of forest vegetation divisions in eastern China. Main conclusions Our results reveal that mean leaf life span in evergreen forests follows a common logistic pattern associated with mean annual temperature and precipitation, which can in turn be used to predict evergreen forest zonation in eastern China.  相似文献   

12.
Nowadays, the biological monitoring through the growth rings has received increasing attention from ecologists and toxicologists. Structural analysis of these rings allows the incorporation of a time component in the study of plant responses to environmental variation. This allows also to evaluate long time series from the woody plants. In this paper, we assessed the dendrochronological characteristics of Ceiba speciosa growing in forest environment and under urbanization impact. Stem samples were obtained with Pressler probe into trees growing the campus of the Oswaldo Cruz Foundation, adjacent to one of the main urban thoroughfares of the city of Rio de Janeiro (Avenida Brasil), and at Tinguá Biological Reserve, an important remnant of Atlantic Forest. The samples were processed and analyzed following usual dendrochronological methods, with COFECHA and ARSTAN softwares. A negative exponential curve was used for standardization of the series. The residual chronologies were correlated with precipitation and temperature indexes obtained from NOAA weather database. Growth rings are distinct and annual, marked by bands of marginal parenchyma, thick-walled and radially flattened fibres in latewood and distended rays in earlywood. In both sites, the intercorrelation between the trees was above 0.40. Ages ranged from 11 to 41 years in the urban site and from 27 to 64 years in the forest site. In urban area, mean annual increment and cumulative average growth rates were 6 mm/year and 142.62 mm, respectively. At the forest site, these rates were 4 mm/year and 173.07 mm, respectively. The comparison between cumulative radial increment of the two sites revealed that trees of the urban site had higher increment rates beginning at the start of their development and consequently, they showed similar diameters despite lower ages. Correlation analysis between the chronologies and climatic factors revealed a positive association between growth and hot and rainy periods for both study sites. However, there is an immediate response of urban trees in relation to the rains and, a late response of forest trees to the same factor. The dry and hot climate, typical of urban environments, and the absence of natural water reserves in urban soil, may explain this more immediate response of urban tree growth to rainfall and temperature indexes. Our results revealed that Ceiba speciosa is a plastic and stress-tolerant species that is able to survive and adapt to polluted urban conditions. These features, along with its wide natural distribution and frequent planting for city landscaping, make this species an important biomarker for environmental monitoring studies.  相似文献   

13.
In this paper some aspects of palaeonclimatology are discussed. Tree-ring parameters and grape harvest values representing biospheric quantities are used as annual proxy data. They are matched with climatic time series (temperature and precipitation) on a monthly or seasonal data basis to obtain an assessment of the biosphere-climate response. The climatic variables extend from the late summer of each current year back to the spring of each previous year. The maximum annual ring density proved to be controlled mainly by the temperature of late summer, whereas the so-called Hollstein Index contains information on the precipitation of early summer; the vine quality is influenced by temperature and precipitation alike.  相似文献   

14.
In tropical areas, Dynamic Global Vegetation Models (DGVMs) still have deficiencies in simulating the timing of vegetation phenology. To start addressing this problem, standard Fourier‐based methods are applied to aerosol screened monthly remotely sensed phenology time series (Enhanced Vegetation Index, EVI) and two major driving factors of phenology: solar radiation and precipitation (for March 2000 through December 2006 over northern South America). At 1 × 1 km scale using, power (or variance) spectra on good quality aerosol screened time series, annual cycles in EVI are detected across 58.24% of the study area, the strongest (largest amplitude) occurring in the savanna. Terra Firme forest have weak but significant annual cycles in comparison with savannas because of the heterogeneity of vegetation and nonsynchronous phenological events within 1 × 1 km scale pixels. Significant annual cycles for radiation and precipitation account for 86% and 90% of the region, respectively, with different spatial patterns to phenology. Cross‐spectral analysis was used to compare separately radiation with phenology/EVI, precipitation with phenology/EVI and radiation with precipitation. Overall the majority of the Terra Firme forest appears to have radiation as the driver of phenology (either radiation is in phase or leading phenology/EVI at the annual scale). These results are in agreement with previous research, although in Acre, central and eastern Peru and northern Bolivia there is a coexistence of ‘in phase’ precipitation over Terra Firme forest. In contrast in most areas of savanna precipitation appears to be a driver and savanna areas experiencing an inverse (antiphase) relationship between radiation and phenology is consistent with inhibited grassland growth due to soil moisture limitation. The resulting maps provide a better spatial understanding of phenology–driver relationships offering a bench mark to parameterize ecological models.  相似文献   

15.
We explore whether a growth-ring analysis can produce additional information about carbon budgets in tropical forests. Such forests are characterized by a high number of species and by trees that rarely have anatomically distinct annual growth rings, which hampers the application of dendrochronological tools in carbon balance assessments in the tropics. We use forest inventory data and archived annual diameter measurements from the Luki Biosphere Reserve in the southwestern margin of the Congo Basin forest massif. In addition, dated wood data are available from the same location thanks to tag nail traces that allow for the measurement of growth increments over a period of 66 years.We find that precise increment measurements based on dated wood are advisable for small subsets of many less abundant species and for functional species groups characterized by slow growth. The dated wood approach shows that many understory trees with non-periodical rings remain in a steady state for long periods of time. These results suggest a dated wood approach is advisable for studies of growth trajectories of individual trees that might be of importance for carbon assessments in degraded forests.  相似文献   

16.
Macaronesian laurel forests are the only remnants of a subtropical palaeoecosystem dominant during the Tertiary in Europe and northern Africa. These biodiverse ecosystems are restricted to cloudy and temperate insular environments in the North Atlantic Ocean. Due to their reduced distribution area, these forests are particularly vulnerable to anthropogenic disturbances and changes in climatic conditions. The assessment of laurel forest trees’ response to climate variation by dendrochronological methods is limited because it was assumed that the lack of marked seasonality would prevent the formation of distinct annual tree rings. The aims of this study were to identify the presence of annual growth rings and to assess the dendrochronological potential of the most representative tree species from laurel forests in Tenerife, Canary Islands. We sampled increment cores from 498 trees of 12 species in two well-preserved forests in Tenerife Island. We evaluated tree-ring boundary distinctness, dating potential, and sensitivity of tree-ring growth to climate and, particularly, to drought occurrence. Eight species showed clear tree-ring boundaries, but synchronic annual tree rings and robust tree-ring chronologies were only obtained for Laurus novocanariensis, Ilex perado subsp. platyphylla, Persea indica and Picconia excelsa, a third of the studied species. Tree-ring width depended on water balance and drought occurrence, showing sharp reductions in growth in the face of decreased water availability, a response that was consistent among species and sites. Inter-annual tree-ring width variation was directly dependent on rainfall input in the humid period, from previous October to current April. The four negative pointer years 1995, 1999, 2008 and 2012 corresponded to severe drought events in the study area. This study gives the first assessment of dendrochronological potential and tree-ring climate sensitivity of tree species from the Tenerife laurel forest, which opens new research avenues for dendroecological studies in Macaronesian laurel forests.  相似文献   

17.
Traditional detrending methods assign equal mean value to all tree-ring series for chronology developments, despite that the mean annual growth changes in different time periods. We find that the strength of a tree-ring model can be improved by giving more weights to tree-ring series that have a stronger climate signal and less weight to series that have a weaker signal. We thus present an ensemble weighting method to mitigate these potential biases and to more accurately extract the climate signals in dendroclimatology studies. This new method has been used to develop the first annual precipitation reconstruction (previous August to current July) at the Songmingyan Mountain and to recalculate the tree-ring chronology from Shenge site in Dulan area in northeastern Tibetan Plateau (TP), a marginal area of Asian summer monsoon. The ensemble weighting method explains 31.7% of instrumental variance for the reconstructions at Songmingyan Mountain and 57.3% of the instrumental variance in the Dulan area, which are higher than those developed using traditional methods. We focus on the newly introduced reconstruction at Songmingyan Mountain, which showsextremely dry (wet) epochs from 1862–1874, 1914–1933 and 1991–1999 (1882–1905). These dry/wet epochs were also found in the marginal areas of summer monsoon and the Indian subcontinent, indicating the linkages between regional hydroclimate changes and the Indian summer monsoon.  相似文献   

18.
Table Mountain pine (Pinus pungens Lamb.) is an Appalachian endemic that occurs in a patchy distribution from Georgia to Pennsylvania on xeric, fire-prone sites. Beginning in the 1990s, Table Mountain pine first showed usefulness in reconstructing fire regimes in these xeric Appalachian forests. The next step in Table Mountain pine research, the relationships between fire occurrence and climate variables, cannot happen until the dendrochronological potential of the species has been proven. This research investigates the annual ring structure and formation, relationship between climate and growth, and dendrochronological dating between trees in the same stands to prove the species’ effectiveness in climate reconstructions. Table Mountain pine cores and cross-sections were collected from four sites in the Virginia Appalachian Mountains. Results indicate that the species is sensitive to climate (monthly precipitation and temperature, PDSI and PHDI). Climate analyses revealed that Table Mountain pine growth is reduced when the previous year's September is drier than normal, the current year’s February is wetter than average, and the winter is colder than average. Results of these climate analyses illustrate a regional climate signal in Table Mountain pine stands; however, results from individual sites provided more significant details on the influence of climate on the species.  相似文献   

19.
On the basis of a significant correlation between the tree-ring width series from Changling–Shoulu (CLSL) in north-central China and observed instrumental data, the annual total precipitation of the previous July to the current June was reconstructed since 1853 for the studied region, with the predictor variables accounting for 41.2% of the variance in the precipitation data. Distinct wet periods with precipitation levels greater than the mean (315 mm) occurred in 1864–1876 and 1934–1960. Notable dry periods with precipitation less than the mean occurred in 1877–1888 and 1923–1933. The precipitation fluctuated dramatically during 1940–1970, and became relatively stable around the mean value from 1960. The CLSL precipitation series showed significant correlations with precipitation reconstructions from Mt. Xinglong, Mt. Helan, Ningwu and eastern China, suggesting that these five rainfall curves represent the general precipitation variations in the western-central environmentally sensitive zone of northern China. The calculations of the CRU grid points also indicate the existence of significant spatial correlation among these sites. Periodicity analysis showed clear 23.33-, 8.24-, 2.64- and 2.59-year cycles at a 99% confidence level for the reconstructed series during the past 155 years.  相似文献   

20.
Tropical trees are often excluded from dendrochronological investigations because of a lack of distinct growth ring boundaries, causing a gap in paleoclimate reconstructions from tropical regions. The potential use of time series of vessel features (density, diameter, surface area and hydraulic conductivity) combined with spectral analysis as a proxy for environmental conditions in the mangrove Rhizophora mucronata was investigated. Intra-annual differences in the vessel features revealed a trade-off between hydraulic efficiency (large vessels) during the rainy season and hydraulic safety (small, more numerous vessels) during the dry season. In addition to the earlywood-latewood variations, a semiannual signal was discovered in the vessel density and diameters after Fourier transformation. The similarity in the Fourier spectra of the vessel features and the climate data, in particular mean relative humidity and precipitation, provides strong evidence for a climatic driving force for the intra-annual variability of the vessel features. The high-resolution approach used in this study, in combination with spectral analysis, may have great potential for the study of climate variability in tropical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号